
spray
Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

March 01, 2016





Contents

1 What is spray? 1
1.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Getting Started 3

3 spray for Web Development 5
3.1 This Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Other Resources 7

5 Documentation 9
5.1 spray-caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 spray-can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 spray-client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 spray-http . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 spray-httpx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 spray-io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 spray-routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8 spray-servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.9 spray-testkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.10 spray-util . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Project Info 169
6.1 Current Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Migration from M8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3 Maven Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.6 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.8 Sponsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.9 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.10 Community Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7 Blog 197
7.1 spray on the Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2 spray 1.0-M8 / 1.1-M8 / 1.2-M8 released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

i



7.3 Benchmarking spray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.4 The Magnet Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5 Welcome to the spray Blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8 Contact 215
8.1 Mailing List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.2 Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3 Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.4 Commercial Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Bibliography 217

ii



CHAPTER 1

What is spray?

spray is a suite of lightweight Scala libraries providing client- and server-side REST/HTTP support on top Akka.

We believe that, having chosen Scala (and possibly Akka) as primary tools for building software, you’ll want to rely on
their power not only in your application layer but throughout the full (JVM-level) network stack. spray provides just
that: a set of integrated components for all your REST/HTTP needs that let you work with idiomatic Scala (and Akka)
APIs at the stack level of your choice, all implemented without any wrapping layers around “legacy” Java libraries.

1.1 Principles

sprays development is guided by the following principles:

Fully asynchronous, non-blocking All APIs are fully asynchronous, blocking code is avoided wherever at all possi-
ble.

Actor- and Future-based spray fully embraces the programming model of the platform it is built upon. Akka Actors
and Futures are key constructs of its APIs.

High-performance Especially sprays low-level components are carefully crafted for excellent performance in high-
load environments.

Lightweight All dependencies are very carefully managed, sprays codebase itself is kept as lean as possible.

Modular Being structured into a set of integrated but loosely coupled components your application only needs to
depend onto the parts that are actually used.

Testable All spray components are structured in a way that allows for easy and convenient testing.

1.2 Modules

Currently the spray suite consists of these modules:

spray-caching Fast and lightweight in-memory caching built upon concurrentlinkedhashmap and Akka Futures.

spray-can A low-level, low-overhead, high-performance HTTP server and client built on top of spray-io.

spray-client Provides client-side HTTP support at a higher level than the low-level spray-can HTTP Client APIs,
which it builds on.

spray-http An immutable model of HTTP requests, responses and common headers. This module is completely
stand-alone, it neither depends on Akka nor on any other part of spray.

1

http://www.scala-lang.org
http://akka.io
http://www.scala-lang.org
http://akka.io
http://www.scala-lang.org
http://akka.io
http://code.google.com/p/concurrentlinkedhashmap/
http://akka.io


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

spray-httpx Higher-level tools for working with HTTP messages (mainly marshalling, unmarshalling and
(de)compression) that are used by both spray-client as well as spray-routing.

spray-io A low-level network IO layer for directly connecting Akka actors to asynchronous Java NIO sockets. We
like to think of it a basic version of Netty for Scala. As of 1.0-M8/1.1-M8 it contains a backport of the new
Akka IO layer coming with Akka 2.2. In 1.2-M8 it merely contains a few spray-specific “left-overs” that will
likely go away completely in the future.

spray-servlet An adapter layer providing (a subset of) the spray-can HTTP Server interface on top of the Servlet API.
Enables the use of spray-routing in a servlet container.

spray-routing A high-level routing DSL for elegantly defining RESTful web services.

spray-testkit A DSL for easily testing spray-routing services. Supports both ScalaTest as well as Specs2.

spray-util Small utility module used by all other modules except spray-http.

spray-json A lightweight, clean and simple JSON implementation in Scala. Because it neither depends on any other
part of spray nor on Akka and is only an optional dependency of spray-client and spray-httpx it doesn’t live
in the main spray repository, but rather in its own github repository Note that you can easily use spray with
whatever JSON library you like best, spray-json is just one of several alternatives.

1.3 Philosophy

Since its inception in early 2011 sprays development has been driven with a clear focus on providing tools for building
integration layers rather than application cores. As such it regards itself as a suite of libraries rather than a framework.

A framework, as we’d like to think of the term, gives you a “frame”, in which you build your application. It comes with
a lot of decisions already pre-made and provides a foundation including support structures that lets you get started and
deliver results quickly. In a way a framework is like a skeleton onto which you put the “flesh” of your application in
order to have it come alive. As such frameworks work best if you choose them before you start application development
and try to stick to the frameworks “way of doing things” as you go along.

For example, if you are building a browser-facing web application it makes sense to choose a web framework and
build your application on top of it because the “core” of the application is the interaction of a browser with your code
on the web-server. The framework makers have chosen one “proven” way of designing such applications and let you
“fill in the blanks” of a more or less flexible “application-template”. Being able to rely on best-practice architecture
like this can be a great asset for getting things done quickly.

However, if your application is not primarily a web application because its core is not browser-interaction but some
specialized maybe complex business service and you are merely trying to connect it to the world via a REST/HTTP
interface a web-framework might not be what you need. In this case the application architecture should be dic-
tated by what makes sense for the core not the interface layer. Also, you probably won’t benefit from the possibly
existing browser-specific framework components like view templating, asset management, JavaScript- and CSS gen-
eration/manipulation/minification, localization support, AJAX support, etc.

spray was designed specifically as “not-a-framework”, not because we don’t like frameworks, but for use cases where
a framework is not the right choice. spray is made for building integration layers based on HTTP and as such tries
to “stay on the sidelines”. Therefore you normally don’t build your application “on top of” spray, but you build your
application on top of whatever makes sense and use spray merely for the HTTP integration needs.

2 Chapter 1. What is spray?

http://www.jboss.org/netty
http://scalatest.org
http://specs2.org
https://github.com/spray/spray-json
https://github.com/spray/spray-json


CHAPTER 2

Getting Started

To help you get going we created the spray-template project on GitHub. This provides everything you need to get a
spray HTTP server application up-and-running in under 5 minutes and view the result in your browser.

Try running one of these examples:

• spray as a standalone service - this uses the spray-routing and spray-can modules

• spray inside a servlet container - uses spray-routing and spray-servlet inside a Jetty server

Note: each example lives in its own Git branch of the spray-template project.

3

https://github.com/spray/spray-template/
https://github.com/spray/spray-template/tree/on_spray-can_1.3
https://github.com/spray/spray-template/tree/on_jetty_1.3


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

4 Chapter 2. Getting Started



CHAPTER 3

spray for Web Development

Even though sprays development focus so far has not been web applications but HTTP-based integration layers, you
can of course use it for powering browser-based GUIs as well. The recent trend of moving web application logic more
and more away from the server and into the (JS-based) browser client as well as the increasing availability of good
SBT-plugins for things spray itself does not provide (like view-templating or LESS- and CoffeeScript-Support) might
even make such an approach gain attractiveness.

Currently a spray-based web development stack might consist of (a subset of) these components:

spray-can HTTP Server The web-server. Receives HTTP request and sends out responses. Optionally terminates
SSL.

spray-routing The routing layer. Handles requests depending on URI, parameters, content, etc. and (un)marshals to
and from the application-specific domain model. Forwards higher-level job requests to deeper application levels
and converts the respective results into HTTP responses. Serves static content.

sbt-revolver SBT-plugin for hot reloading of changes to any type of sources (scala, twirl, CSS, LESS, JavaScript,
CoffeeScript, images, etc.) without the need to restart the server. Can deliver an almost “dynamic-language”
type of development experience.

twirl SBT-plugin providing for view-templating based on the play 2.0 template engine.

less-sbt SBT-plugin for compilation of LESS sources to CSS.

coffeescripted-sbt SBT-plugin for compilation of CoffeeScript sources to JavaScript.

sbt-js SBT-plugin for Javascript and Coffeescript compilation, minification, and templating.

SLICK Library for elegant database query and access.

spray-json Library for clean and idiomatic JSON reading and writing.

sbt-assembly SBT-plugin for single-fat-JAR-deployment.

A client-side frontend framework One of the several established client-side JavaScript frameworks.

While a stack like this might not provide everything that a full-grown web framework can offer it could have all that’s
required for your particular application. And, because you can pick the best tool for each individual job, the resulting
application stack is a lot more flexible and possibly future-proof than any single framework. Of course the downside
of this approach is that integrating the different components is now on your shoulders. Also, there is no single point
of contact for support and upgrades.

Still, combining a client-side JavaScript framework with a spray-based application backend could prove itself as an
interesting alternative to a “classic” server-side web framework. We’d love to hear about your experiences in this
regard...

5

https://github.com/spray/sbt-revolver
https://github.com/spray/twirl
http://www.playframework.org/
https://github.com/softprops/less-sbt
http://lesscss.org/
https://github.com/softprops/coffeescripted-sbt
http://coffeescript.org/
https://github.com/untyped/sbt-plugins/tree/master/sbt-js
http://slick.typesafe.com/
https://github.com/spray/spray-json
https://github.com/sbt/sbt-assembly
http://blog.stevensanderson.com/2012/08/01/rich-javascript-applications-the-seven-frameworks-throne-of-js-2012/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

3.1 This Site

One example of a simple website running on a spray-based stack is this site (http://spray.io). Here is the stack we use
for spray.io:

• spray-can HTTP Server

• spray-routing

• sbt-revolver

• twirl

• a custom SBT extension for compiling Sphinx sources to JSON

• spray-json (for reading Sphinx output)

• sbt-assembly

• Mentor (a non-free, responsive HTML5 template based on Bootstrap)

For more details check out the route definition of this site: https://github.com/spray/spray/blob/master/site/src/main/scala/spray/site/SiteServiceActor.scala.

6 Chapter 3. spray for Web Development

http://spray.io
https://github.com/spray/sbt-revolver
https://github.com/spray/twirl
http://sphinx.pocoo.org/
https://github.com/spray/spray-json
http://sphinx.pocoo.org/
https://github.com/sbt/sbt-assembly
http://demo.pixelentity.com/?mentor_html
http://twitter.github.com/bootstrap/
https://github.com/spray/spray/blob/master/site/src/main/scala/spray/site/SiteServiceActor.scala


CHAPTER 4

Other Resources

Oct 2015: “Reactive Streams & Akka HTTP - Behold the Flow!” talk from Scala World 2015

Video: https://www.youtube.com/watch?v=6VBn9V3S2aQ
Code: https://github.com/jrudolph/scala-world-2015

Jun 2015: “Reactive Streams - The Now” talk from ScalaDays 2015

Video: https://www.parleys.com/tutorial/the-reactive-streams-implementation-landscape
Slides: /scaladays/2015/

Feb 2015: “Reactive Streams & Akka HTTP” at Scala User Group - Berlin Brandenburg

Slides: /berlin/

Feb 2015: “REST on Akka: Connect to the World” at Jfokus 2015

Slides: /jfokus/

Jan 2015: “Akka HTTP — The What, Why and How” at NEScala 2015

Video: https://www.youtube.com/watch?v=y_slPbktLr0
Slides: /nescala2015/

Jan 2015: “Reactive Streams and Akka HTTP” at the Vienna Scala User Group

Slides: /vienna/

Dec 2014: “Reactive Streams and Akka HTTP” at the Dutch Scala Enthusiasts

Slides: /duse/

Dec 2014: “Akka HTTP: Connect to the world” talk from Scala eXchange 2014

Video: https://skillsmatter.com/skillscasts/5852-rest-on-akka-connect-to-the-world
Slides: /scalax/2014/

Oct 2014: “Akka HTTP: Connect to the world” talk from scala.io 2014

Slides: /scala.io/2014/

Oct 2014: “Reactive Streams and Akka HTTP” at the Munich Scala User Group Meetup

Slides: /msug/

June 2014: “akka-http: (un)REST your actors” talk from ScalaDays 2014

Video: http://www.parleys.com/play/53a7d2c3e4b0543940d9e539/chapter0/about
Slides: /scaladays/2014/

May 2014: “Actors, HTTP and Reactive Streams” talk from JAX 2014

7

https://scala.world/
https://www.youtube.com/watch?v=6VBn9V3S2aQ
https://github.com/jrudolph/scala-world-2015
http://scaladays.org/
https://www.parleys.com/tutorial/the-reactive-streams-implementation-landscape
http://www.meetup.com/Scala-Berlin-Brandenburg/
http://jfokus.se/
http://nescala.org/
https://www.youtube.com/watch?v=y_slPbktLr0
http://www.meetup.com/scala-vienna/
http://www.meetup.com/Dutch-Scala-Enthusiasts/events/218602810/
http://skillsmatter.com/event/scala/scala-exchange-2014
https://skillsmatter.com/skillscasts/5852-rest-on-akka-connect-to-the-world
http://scala.io
http://www.meetup.com/ScalaMuc/
http://scaladays.org/
http://www.parleys.com/play/53a7d2c3e4b0543940d9e539/chapter0/about
http://jax.de/2014/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Slides: /jax14/

Apr 2014: “Introduction to Akka and spray” at the Zurich Scala Enthusiasts Meetup

Slides: /zse/

Dec 2013: Introductory live-coding session at Scala eXchange 2013

Video: http://skillsmatter.com/podcast/scala/mathias-doenitz

Nov 2013: “spray: REST on Akka” Typesafe webinar

Video: http://www.youtube.com/watch?v=7MqD7_YvZ8Q
Slides: /webinar/

Nov 2013: “Akka & spray: Actors, IO and HTTP” talk from wjax 2013

Slides: /wjax/

Oct 2013: “spray: REST on Akka” talk from scala.io 2013

Slides: /scala.io/2013/

Jan 2013: “The Scala Types” podcast: “Mathias Doenitz on spray“

Part 1: http://bit.ly/scalatypes-podcast-on-spray-part-1
Part 2: http://bit.ly/scalatypes-podcast-on-spray-part-2

Apr 2012: “spray: REST on Akka” talk from the Scala Days 2012

Video: http://skillsmatter.com/podcast/scala/spray-rest-on-akka
Slides: http://www.slideshare.net/sirthias/spray-rest-on-akka-12616908

Mar 2012: “spray: REST on Akka” talk from the Northeast Scala Symposium 2012

Video: http://www.youtube.com/watch?v=fUuLJmWB__E
Slides: http://www.slideshare.net/sirthias/spray-rest-on-akka

8 Chapter 4. Other Resources

http://www.meetup.com/Zurich-Scala/events/175778012/
http://skillsmatter.com/event/scala/scala-exchange-2013
http://skillsmatter.com/podcast/scala/mathias-doenitz
http://www.typesafe.com/blog/Webinar
http://www.youtube.com/watch?v=7MqD7_YvZ8Q
http://jax.de/wjax2013/
http://scala.io
http://bit.ly/scalatypes-podcast-on-spray-part-1
http://bit.ly/scalatypes-podcast-on-spray-part-2
http://skillsmatter.com/podcast/scala/spray-rest-on-akka
http://www.slideshare.net/sirthias/spray-rest-on-akka-12616908
http://www.youtube.com/watch?v=fUuLJmWB__E
http://www.slideshare.net/sirthias/spray-rest-on-akka


CHAPTER 5

Documentation

This is the index of all documentation chapters for the different modules of the spray suite:

5.1 spray-caching

spray-caching provides a lightweight and fast in-memory caching functionality based on Akka Futures and concur-
rentlinkedhashmap. The primary use-case is the “wrapping” of an expensive operation with a caching layer that, based
on a certain key of type K, runs the wrapped operation only once and returns the the cached value for all future accesses
for the same key (as long as the respective entry has not expired).

The central idea of a spray-caching cache is to not store the actual values of type T themselves in the cache but rather
corresponding Akka Futures, i.e. instances of type Future[T]. This approach has the advantage of nicely taking
care of the thundering herds problem where many requests to a particular cache key (e.g. a resource URI) arrive before
the first one could be completed. Normally (without special guarding techniques, like so-called “cowboy” entries) this
can cause many requests to compete for system resources while trying to compute the same result thereby greatly
reducing overall system performance. When you use a spray-caching cache the very first request that arrives for a
certain cache key causes a future to be put into the cache which all later requests then “hook into”. As soon as the first
request completes all other ones complete as well. This minimizes processing time and server load for all requests.

5.1.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-caching depends on

• spray-util

• concurrentlinkedhashmap

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

5.1.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-caching into your classpath.

Afterwards just import spray.caching._ to bring all relevant identifiers into scope.

5.1.3 The Cache Interface

All spray-caching cache implementations implement the Cache trait, which allows you to interact with the cache
through nine methods:

9

http://code.google.com/p/concurrentlinkedhashmap/
http://code.google.com/p/concurrentlinkedhashmap/
http://code.google.com/p/concurrentlinkedhashmap/
https://github.com/spray/spray/blob/master/spray-caching/src/main/scala/spray/caching/Cache.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• def apply(key: Any)(expr: => V): Future[V] wraps an “expensive” expression with
caching support. Note, that the generation expression is never run inside a Future with this overload. In-
stead, either, the cache already contains an entry for the key in which case the existing result is returned, or the
generating expression is synchronously run to produce the value.

• def apply(key: Any)(future: => Future[V]): Future[V] is similar, but allows the ex-
pression to produce the future itself.

• def apply(key: Any)(func: Promise[V] => Unit): Future[V] provides a “push-
style” alternative.

• def get(key: Any): Option[Future[V]] retrieves the future instance that is currently in the
cache for the given key. Returns None if the key has no corresponding cache entry.

• def remove(key: Any): Option[Future[V]] removes the cache item for the given key. Returns
the removed item if it was found (and removed).

• def clear() clears the cache by removing all entries.

• def size(): Int returns the number of entries.

• def keys(): Set[Any] returns the current keys as an unordered set.

• def ascendingKeys(limit: Option[Int]): Iterator[Any] allows one to iterate through
the keys in order from the least recently used to the most recently used.

Note that the apply overloads require an implicit ExecutionContext to be in scope.

5.1.4 Example

import scala.concurrent.Future
import akka.actor.ActorSystem
import spray.caching.{LruCache, Cache}
import spray.util._

val system = ActorSystem()
import system.dispatcher

// if we have an "expensive" operation
def expensiveOp(): Double = new util.Random().nextDouble()

// and a Cache for its result type
val cache: Cache[Double] = LruCache()

// we can wrap the operation with caching support
// (providing a caching key)
def cachedOp[T](key: T): Future[Double] = cache(key) {
expensiveOp()

}

// and profit
cachedOp("foo").await === cachedOp("foo").await
cachedOp("bar").await !== cachedOp("foo").await

5.1.5 Cache Implementations

spray-caching comes with two implementations of the Cache interface, SimpleLruCache and ExpiringLruCache, both
featuring last-recently-used cache eviction semantics and both internally wrapping a concurrentlinkedhashmap. They

10 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-caching/src/main/scala/spray/caching/Cache.scala
https://github.com/spray/spray/blob/master/spray-caching/src/main/scala/spray/caching/LruCache.scala
http://code.google.com/p/concurrentlinkedhashmap/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

difference between the two only consists of whether they support time-based entry expiration or not.

The easiest way to construct a cache instance is via the applymethod of the LruCache object, which has the follow-
ing signature and creates a new ExpiringLruCache or SimpleLruCache depending on whether timeToLive
and/or timeToIdle are finite (= expiring) or infinite:

/**
* Creates a new [[spray.caching.ExpiringLruCache]] or

* [[spray.caching.SimpleLruCache]] instance depending on whether

* a non-zero and finite timeToLive and/or timeToIdle is set or not.

*/
def apply[V](maxCapacity: Int = 500,

initialCapacity: Int = 16,
timeToLive: Duration = Duration.Inf,
timeToIdle: Duration = Duration.Inf): Cache[V] = {

SimpleLruCache

This cache implementation has a defined maximum number of entries it can store. After the maximum capacity is
reached new entries cause old ones to be evicted in a last-recently-used manner, i.e. the entries that haven’t been
accessed for the longest time are evicted first.

ExpiringLruCache

This implementation has the same limited capacity behavior as the SimpleLruCache but in addition supports time-
to-live as well as time-to-idle expiration. The former provides an upper limit to the time period an entry is allowed to
remain in the cache while the latter limits the maximum time an entry is kept without having been accessed. If both
values are finite the time-to-live has to be strictly greater than the time-to-idle.

Note: Expired entries are only evicted upon next access (or by being thrown out by the capacity constraint), so they
might prevent garbage collection of their values for longer than expected.

5.2 spray-can

The spray-can module provides a low-level, low-overhead, high-performance HTTP server and client built on top of
spray-io. Both are fully asynchronous, non-blocking and built 100% in Scala on top of Akka. Since their APIs are
centered around Akka abstractions such as Actors and Futures they are very easy to integrate into your Akka-based
applications.

5.2.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-can depends on

• spray-io

• spray-http

• spray-util

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

5.2. spray-can 11



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.2.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-can into your classpath.

Once you have spray-can available you communicate with it mostly via the IO(Http) extension it provides. See the
respective chapter for more information on this-

5.2.3 Configuration

Just like Akka spray-can relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-can module:

###################################
# spray-can Reference Config File #
###################################

# This is the reference config file that contains all the default settings.
# Make your edits/overrides in your application.conf.

spray.can {

server {
# The value of the `Server` header to produce.
# Set to the empty string to disable rendering of the server header.
server-header = spray-can/${spray.version}

# Enables/disables SSL encryption.
# If enabled the server uses the implicit `ServerSSLEngineProvider` member
# of the `Bind` command to create `SSLEngine` instances for the underlying
# IO connection.
ssl-encryption = off

# The maximum number of requests that are accepted (and dispatched to
# the application) on one single connection before the first request
# has to be completed.
# Incoming requests that would cause the pipelining limit to be exceeded
# are not read from the connections socket so as to build up "back-pressure"
# to the client via TCP flow control.
# A setting of 1 disables HTTP pipelining, since only one request per
# connection can be "open" (i.e. being processed by the application) at any
# time. Set to higher values to enable HTTP pipelining.
# Set to 'disabled' for completely disabling pipelining limits
# (not recommended on public-facing servers due to risk of DoS attacks).
# This value must be > 0 and <= 128.
pipelining-limit = 1

# The time after which an idle connection will be automatically closed.
# Set to `infinite` to completely disable idle connection timeouts.
idle-timeout = 60 s

12 Chapter 5. Documentation

https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.1.4/general/configuration.html
http://doc.akka.io/docs/akka/2.1.4/general/configuration.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

# If a request hasn't been responded to after the time period set here
# a `spray.http.Timedout` message will be sent to the timeout handler.
# Set to `infinite` to completely disable request timeouts.
request-timeout = 20 s

# After a `Timedout` message has been sent to the timeout handler and the
# request still hasn't been completed after the time period set here
# the server will complete the request itself with an error response.
# Set to `infinite` to disable timeout timeouts.
timeout-timeout = 2 s

# The period during which a service must respond to a `ChunkedRequestStart` message
# with a `RegisterChunkHandler` message. During the registration period reading from
# the network is suspended. It is still possible that some chunks have already been
# received which will be buffered until the registration is received or the timeout is
# triggered. If the timeout is triggered the connection is immediately aborted.
chunkhandler-registration-timeout = 500 ms

# The path of the actor to send `spray.http.Timedout` messages to.
# If empty all `Timedout` messages will go to the "regular" request
# handling actor.
timeout-handler = ""

# The "granularity" of timeout checking for both idle connections timeouts
# as well as request timeouts, should rarely be needed to modify.
# If set to `infinite` request and connection timeout checking is disabled.
reaping-cycle = 250 ms

# Enables/disables support for statistics collection and querying.
# Even though stats keeping overhead is small,
# for maximum performance switch off when not needed.
stats-support = on

# Enables/disables the addition of a `Remote-Address` header
# holding the clients (remote) IP address.
remote-address-header = off

# Enables/disables the addition of a `Raw-Request-URI` header holding the
# original raw request URI as the client has sent it.
raw-request-uri-header = off

# Enables/disables automatic handling of HEAD requests.
# If this setting is enabled the server dispatches HEAD requests as GET
# requests to the application and automatically strips off all message
# bodies from outgoing responses.
# Note that, even when this setting is off the server will never send
# out message bodies on responses to HEAD requests.
transparent-head-requests = on

# Enables/disables an alternative response streaming mode that doesn't
# use `Transfer-Encoding: chunked` but rather renders the individual
# MessageChunks coming in from the application as parts of the original
# response entity.
# Enabling this mode causes all connections to be closed after a streaming
# response has been finished since there is no other way to signal the
# response end to the client.
# Note that chunkless-streaming is implicitly enabled when streaming
# responses to HTTP/1.0 clients (since they don't support

5.2. spray-can 13



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

# `Transfer-Encoding: chunked`)
chunkless-streaming = off

# Enables/disables the returning of more detailed error messages to
# the client in the error response.
# Should be disabled for browser-facing APIs due to the risk of XSS attacks
# and (probably) enabled for internal or non-browser APIs.
# Note that spray will always produce log messages containing the full
# error details.
verbose-error-messages = off

# Enables/disables the logging of the full (potentially multiple line)
# error message to the server logs.
# If disabled only a single line will be logged.
verbose-error-logging = off

# If this setting is non-zero the HTTP server automatically aggregates
# incoming request chunks into full HttpRequests before dispatching them to
# the application. If the size of the aggregated requests surpasses the
# specified limit the server responds with a `413 Request Entity Too Large`
# error response before closing the connection.
# Set to zero to disable automatic request chunk aggregation and have
# ChunkedRequestStart, MessageChunk and ChunkedMessageEnd messages be
# dispatched to the handler.
request-chunk-aggregation-limit = 1m

# The initial size if the buffer to render the response headers in.
# Can be used for fine-tuning response rendering performance but probably
# doesn't have to be fiddled with in most applications.
response-header-size-hint = 512

# For HTTPS connections this setting specified the maximum number of
# bytes that are encrypted in one go. Large responses are broken down in
# chunks of this size so as to already begin sending before the response has
# been encrypted entirely.
max-encryption-chunk-size = 1m

# The time period within which the TCP binding process must be completed.
# Set to `infinite` to disable.
bind-timeout = 1s

# The time period within which the TCP unbinding process must be completed.
# Set to `infinite` to disable.
unbind-timeout = 1s

# The time period within which a connection handler must have been
# registered after the bind handler has received a `Connected` event.
# Set to `infinite` to disable.
registration-timeout = 1s

# The time after which a connection is aborted (RST) after a parsing error
# occurred. The timeout prevents a connection which is already known to be
# erroneous from receiving evermore data even if all of the data will be ignored.
# However, in case of a connection abortion the client usually doesn't properly
# receive the error response. This timeout is a trade-off which allows the client
# some time to finish its request and receive a proper error response before the
# connection is forcibly closed to free resources.
parsing-error-abort-timeout = 2s

14 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

# If this setting is empty the server only accepts requests that carry a
# non-empty `Host` header. Otherwise it responds with `400 Bad Request`.
# Set to a non-empty value to be used in lieu of a missing or empty `Host`
# header to make the server accept such requests.
# Note that the server will never accept HTTP/1.1 request without a `Host`
# header, i.e. this setting only affects HTTP/1.1 requests with an empty
# `Host` header as well as HTTP/1.0 requests.
# Examples: `www.spray.io` or `example.com:8080`
default-host-header = ""

# Enables/disables automatic back-pressure handling by write buffering and
# receive throttling
automatic-back-pressure-handling = on

back-pressure {
# The reciprocal rate of requested Acks per NoAcks. E.g. the default value
# '10' means that every 10th write request is acknowledged. This affects the
# number of writes each connection has to buffer even in absence of back-pressure.
noack-rate = 10

# The lower limit the write queue size has to shrink to before reads are resumed.
# Use 'infinite' to disable the low-watermark so that reading is resumed instantly
# after the next successful write.
reading-low-watermark = infinite

}

# Enables more verbose DEBUG logging for debugging SSL related issues.
ssl-tracing = off

# Modify to tweak parsing settings on the server-side only.
parsing = ${spray.can.parsing}

}

client {
# The default value of the `User-Agent` header to produce if no
# explicit `User-Agent`-header was included in a request.
# If this value is the empty string and no header was included in
# the request, no `User-Agent` header will be rendered at all.
user-agent-header = spray-can/${spray.version}

# The time after which an idle connection will be automatically closed.
# Set to `infinite` to completely disable idle timeouts.
idle-timeout = 60 s

# The max time period that a client connection will be waiting for a response
# before triggering a request timeout. The timer for this logic is not started
# until the connection is actually in a state to receive the response, which
# may be quite some time after the request has been received from the
# application!
# There are two main reasons to delay the start of the request timeout timer:
# 1. On the host-level API with pipelining disabled:
# If the request cannot be sent immediately because all connections are
# currently busy with earlier requests it has to be queued until a
# connection becomes available.
# 2. With pipelining enabled:
# The request timeout timer starts only once the response for the
# preceding request on the connection has arrived.
# Set to `infinite` to completely disable request timeouts.

5.2. spray-can 15



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

request-timeout = 20 s

# the "granularity" of timeout checking for both idle connections timeouts
# as well as request timeouts, should rarely be needed to modify.
# If set to `infinite` request and connection timeout checking is disabled.
reaping-cycle = 250 ms

# If this setting is non-zero the HTTP client connections automatically
# aggregate incoming response chunks into full HttpResponses before
# dispatching them to the application.
# If the size of the aggregated response surpasses the specified limit the
# HTTP client connection is closed and an error returned.
# Set to zero to disable automatic request chunk aggregation and have
# ChunkedResponseStart, MessageChunk and ChunkedMessageEnd messages be
# dispatched to the application.
response-chunk-aggregation-limit = 1m

# Enables/disables an alternative request streaming mode that doesn't
# use `Transfer-Encoding: chunked` but rather renders the individual
# MessageChunks coming in from the application as parts of the original
# request entity.
# Enabling this mode causes all requests to require an explicit `Content-Length`
# header for streaming requests.
# Note that chunkless-streaming is implicitly enabled when streaming
# HTTP/1.0 requests since they don't support `Transfer-Encoding: chunked`.
chunkless-streaming = off

# The initial size if the buffer to render the request headers in.
# Can be used for fine-tuning request rendering performance but probably
# doesn't have to be fiddled with in most applications.
request-header-size-hint = 512

# For HTTPS connections this setting specified the maximum number of
# bytes that are encrypted in one go. Large requests are broken down in
# chunks of this size so as to already begin sending before the request has
# been encrypted entirely.
max-encryption-chunk-size = 1m

# The time period within which the TCP connecting process must be completed.
# Set to `infinite` to disable.
connecting-timeout = 10s

# The proxy configurations to be used for requests with the specified
# scheme.
proxy {

# Proxy settings for unencrypted HTTP requests
# Set to 'none' to always connect directly, 'default' to use the system
# settings as described in http://docs.oracle.com/javase/6/docs/technotes/guides/net/proxies.html
# or specify the proxy host, port and non proxy hosts as demonstrated
# in the following example:
# http {
# host = myproxy.com
# port = 8080
# non-proxy-hosts = ["*.direct-access.net"]
# }
http = default

# Proxy settings for HTTPS requests (currently unsupported)

16 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

https = default
}

# Enables more verbose DEBUG logging for debugging SSL related issues.
ssl-tracing = off

# Modify to tweak parsing settings on the client-side only.
parsing = ${spray.can.parsing}

}

host-connector {
# The maximum number of parallel connections that an `HttpHostConnector`
# is allowed to establish to a host. Must be greater than zero.
max-connections = 4

# The maximum number of times an `HttpHostConnector` attempts to repeat
# failed requests (if the request can be safely retried) before
# giving up and returning an error.
max-retries = 5

# Configures redirection following.
# If set to zero redirection responses will not be followed, i.e. they'll be returned to the user as is.
# If set to a value > zero redirection responses will be followed up to the given number of times.
# If the redirection chain is longer than the configured value the first redirection response that is
# is not followed anymore is returned to the user as is.
max-redirects = 0

# If this setting is enabled, the `HttpHostConnector` pipelines requests
# across connections, otherwise only one single request can be "open"
# on a particular HTTP connection.
pipelining = off

# The time after which an idle `HttpHostConnector` (without open
# connections) will automatically terminate itself.
# Set to `infinite` to completely disable idle timeouts.
idle-timeout = 30 s

# Modify to tweak client settings for this host-connector only.
client = ${spray.can.client}

}

# The (default) configuration of the HTTP message parser for the server and
# the client.
# IMPORTANT: These settings (i.e. children of `spray.can.parsing`) can't be directly
# overridden in `application.conf` to change the parser settings for client and server
# altogether (see https://github.com/spray/spray/issues/346). Instead, override the
# concrete settings beneath `spray.can.server.parsing` and `spray.can.client.parsing`
# where these settings are copied to.
parsing {
# The limits for the various parts of the HTTP message parser.
max-uri-length = 2k
max-response-reason-length = 64
max-header-name-length = 64
max-header-value-length = 8k
max-header-count = 64
max-content-length = 8m
max-chunk-ext-length = 256
max-chunk-size = 1m

5.2. spray-can 17



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

# Sets the strictness mode for parsing request target URIs.
# The following values are defined:
#
# `strict`: RFC3986-compliant URIs are required,
# a 400 response is triggered on violations
#
# `relaxed`: all visible 7-Bit ASCII chars are allowed
#
# `relaxed-with-raw-query`: like `relaxed` but additionally
# the URI query is not parsed, but delivered as one raw string
# as the `key` value of a single Query structure element.
#
uri-parsing-mode = strict

# Enables/disables the logging of warning messages in case an incoming
# message (request or response) contains an HTTP header which cannot be
# parsed into its high-level model class due to incompatible syntax.
# Note that, independently of this settings, spray will accept messages
# with such headers as long as the message as a whole would still be legal
# under the HTTP specification even without this header.
# If a header cannot be parsed into a high-level model instance it will be
# provided as a `RawHeader`.
illegal-header-warnings = on

# limits for the number of different values per header type that the
# header cache will hold
header-cache {

default = 12
Content-MD5 = 0
Date = 0
If-Match = 0
If-Modified-Since = 0
If-None-Match = 0
If-Range = 0
If-Unmodified-Since = 0
User-Agent = 32

}

# Sets the size starting from which incoming http-messages will be delivered
# in chunks regardless of whether chunking is actually used on the wire.
# Set to infinite to disable auto chunking.
incoming-auto-chunking-threshold-size = infinite

# Enables/disables inclusion of an SSL-Session-Info header in parsed
# messages over SSL transports (i.e., HttpRequest on server side and
# HttpResponse on client side).
ssl-session-info-header = off

}

# Fully qualified config path which holds the dispatcher configuration
# to be used for the HttpManager.
manager-dispatcher = "akka.actor.default-dispatcher"

# Fully qualified config path which holds the dispatcher configuration
# to be used for the HttpClientSettingsGroup actors.
settings-group-dispatcher = "akka.actor.default-dispatcher"

# Fully qualified config path which holds the dispatcher configuration

18 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

# to be used for the HttpHostConnector actors.
host-connector-dispatcher = "akka.actor.default-dispatcher"

# Fully qualified config path which holds the dispatcher configuration
# to be used for HttpListener actors.
listener-dispatcher = "akka.actor.default-dispatcher"

# Fully qualified config path which holds the dispatcher configuration
# to be used for HttpServerConnection and HttpClientConnection actors.
connection-dispatcher = "akka.actor.default-dispatcher"

}

5.2.4 HTTP Server

The spray-can HTTP server is an embedded, actor-based, fully asynchronous, low-level, low-overhead and high-
performance HTTP/1.1 server implemented on top of Akka IO / spray-io.

It sports the following features:

• Low per-connection overhead for supporting many thousand concurrent connections

• Efficient message parsing and processing logic for high throughput applications

• Full support for HTTP persistent connections

• Full support for HTTP pipelining

• Full support for asynchronous HTTP streaming (i.e. “chunked” transfer encoding)

• Optional SSL/TLS encryption

• Actor-based architecture and API for easy integration into your Akka applications

Design Philosophy

The spray-can HttpServer is scoped with a clear focus on the essential functionality of an HTTP/1.1 server:

• Connection management

• Message parsing and header separation

• Timeout management (for requests and connections)

• Response ordering (for transparent pipelining support)

All non-core features of typical HTTP servers (like request routing, file serving, compression, etc.) are left to the next-
higher layer in the application stack, they are not implemented by spray-can itself. Apart from general focus this design
keeps the server small and light-weight as well as easy to understand and maintain. It also makes a spray-can HTTP
server a perfect “container” for a spray-routing application, since spray-can and spray-routing nicely complement and
interface into each other.

Basic Architecture

The spray-can HTTP server is implemented by two types of Akka actors, which sit on top of Akka IO. When you tell
spray-can to start a new server instance on a given port an HttpListener actor is started, which accepts incoming
connections and for each one spawns a new HttpServerConnection actor, which then manages the connection
for the rest of its lifetime. These connection actors process the requests coming in across their connection and dispatch

5.2. spray-can 19

http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html
http://en.wikipedia.org/wiki/HTTP_persistent_connection
http://en.wikipedia.org/wiki/HTTP_pipelining
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

them as immutable spray-http HttpRequest instances to a “handler” actor provided by your application. The
handler can complete a request by simply replying with an HttpResponse instance:

def receive = {
case HttpRequest(GET, Uri.Path("/ping"), _, _, _) =>
sender ! HttpResponse(entity = "PONG")

}

Your code never deals with the HttpListener and HttpServerConnection actor classes directly, in fact
they are marked private to the spray-can package. All communication with these actors happens purely via actor
messages, the majority of which are defined in the spray.can.Http object.

Starting

A spray-can HTTP server is started by sending an Http.Bind command to the Http extension:

import akka.io.IO
import spray.can.Http

implicit val system = ActorSystem()

val myListener: ActorRef = // ...

IO(Http) ! Http.Bind(myListener, interface = "localhost", port = 8080)

With the Http.Bind command you register an application-level “listener” actor and specify the interface and port to
bind to. Additionally the Http.Bind command also allows you to define socket options as well as a larger number
of settings for configuring the server according to your needs.

The sender of the Http.Bind command (e.g. an actor you have written) will receive an Http.Bound reply after
the HTTP layer has successfully started the server at the respective endpoint. In case the bind fails (e.g. because the
port is already busy) an Http.CommandFailed message is dispatched instead.

The sender of the Http.Bound confirmation event is spray-can‘s HttpListener instance. You will need this
ActorRef if you want to stop the server later.

Stopping

To explicitly stop the server, send an Http.Unbind command to the HttpListener instance (the ActorRef for
this instance is available as the sender of the Http.Bound confirmation event from when the server was started).

The listener will reply with an Http.Unbound event after successfully unbinding from the port (or with an
Http.CommandFailed in the case of error). At that point no further requests will be accepted by the server.

Any requests which were in progress at the time will proceed to completion. When the last request has terminated, the
HttpListener instance will exit. You can monitor for this (e.g. so that you can shutdown the ActorSystem) by
watching the listener actor and awaiting a Terminated message.

Message Protocol

After having successfully bound an HttpListener your application communicates with the spray-can-level con-
nection actors via a number of actor messages that are explained in this section.

20 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-can/src/main/scala/spray/can/Http.scala#L31


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Request-Response Cycle

When a new connection has been accepted the application-level listener, which was registered with the Http.Bind
command, receives an Http.Connected event message from the connection actor. The application must reply
to it with an Http.Register command within the configured registration-timeout period, otherwise the
connection will be closed.

With the Http.Register command the application tells the connection actor which actor should handle in-
coming requests. The application is free to register the same actor for all connections (a “singleton handler”), a
new one for every connection (“per-connection handlers”) or anything in between. After the connection actor has
received the Http.Register command it starts reading requests from the connection and dispatches them as
spray.http.HttpRequestPart messages to the handler. The handler actor should then process the request
according to the application logic and respond by sending an HttpResponsePart instance to the sender of the
request.

The ActorRef used as the sender of an HttpRequestPart received by the handler is unique to the request, i.e.
several requests, even when coming in across the same connection, will appear to be sent from different senders.
spray-can uses this sender ActorRef to coalesce the response with the request, so you cannot send several responses
to the same sender. However, the different request parts of chunked requests arrive from the same sender, and the
different response parts of a chunked response need to be sent to the same sender as well.

Caution: Since the ActorRef used as the sender of a request is an UnregisteredActorRef it is not reachable
remotely. This means that the actor designated as handler by the application needs to live in the same JVM as the
HTTP extension.

Chunked Requests

If the request-chunk-aggregation-limit config setting is set to zero the connection actor also dispatches
the individual request parts of chunked requests to the handler actor. In these cases a full request consists of the
following messages:

• One ChunkedRequestStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The timer for checking request handling timeouts (if not configured to infinite) only starts running when the final
ChunkedMessageEnd message was dispatched to the handler.

Chunked Responses

Alternatively to a single HttpResponse instance the handler can choose to respond to the request sender with the
following sequence of individual messages:

• One ChunkedResponseStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The timer for checking request handling timeouts (if not configured to infinite) will stop running as soon as the
initial ChunkedResponseStart message has been received from the handler, i.e. there is currently no timeout
checking for and in between individual response chunks.

5.2. spray-can 21



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Request Timeouts

If the handler does not respond to a request within the configured request-timeout period a
spray.http.Timedoutmessage is sent to the timeout handler, which can be the “regular” handler itself or another
actor (depending on the timeout-handler config setting). The timeout handler then has the chance to complete
the request within the time period configured as timeout-timeout. Only if the timeout handler also misses its
deadline for completing the request will the connection actor complete the request itself with a “hard-coded” error
response.

In order to change the respective config setting for that connection only the application can send the following messages
to the sender of a request (part) or the connection actor:

• spray.io.ConnectionTimeouts.SetIdleTimeout

• spray.http.SetRequestTimeout

• spray.http.SetTimeoutTimeout

Closed Notifications

When a connection is closed, for whatever reason, the connection actor dispatches one of five defined
Http.ConnectionClosed event message to the application (see the Common Behavior chapter for more info).

Exactly which actor receives it depends on the current state of request processing. The connection actor sends
Http.ConnectionClosed events coming in from the underlying IO layer

• to the handler actor

• to the request chunk handler if one is defined and no response part was yet received

• to the sender of the last received response part

– if the ACK for an ACKed response part has not yet been dispatched

– if a response chunk stream has not yet been finished (with a ChunkedMessageEnd)

Note: The application can always choose to actively close a connection by sending one of the three defined
Http.CloseCommand messages to the sender of a request or the connection actor (see Common Behavior). How-
ever, during normal operation it is encouraged to make use of the Connection header to signal to the connection
actor whether or not the connection is to be closed after the response has been sent.

Server Statistics

If the stats-support config setting is enabled the server will continuously count connections, requests, time-
outs and other basic statistics. You can ask the HttpListener actor (i.e. the sender ActorRef of the
Http.Bound event message!) to reply with an instance of the spray.can.server.Stats class by sending
it an Http.GetStats command. This is what you will get back:

case class Stats(
uptime: FiniteDuration,
totalRequests: Long,
openRequests: Long,
maxOpenRequests: Long,
totalConnections: Long,
openConnections: Long,

22 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

maxOpenConnections: Long,
requestTimeouts: Long)

By sending the listener an Http.ClearStats command message you can trigger a reset of the stats.

HTTP Headers

When a spray-can connection actor receives an HTTP request it tries to parse all its headers into their respective
spray-http model classes. No matter whether this succeeds or not, the connection actor will always pass on all received
headers to the application. Unknown headers as well as ones with invalid syntax (according to spray‘s header parser)
will be made available as RawHeader instances. For the ones exhibiting parsing errors a warning message is logged
depending on the value of the illegal-header-warnings config setting.

When sending out responses the connection actor watches for a Connection header set by the application and
acts accordingly, i.e. you can force the connection actor to close the connection after having sent the response by
including a Connection("close") header. To unconditionally force a connection keep-alive you can explicitly
set a Connection("Keep-Alive") header. If you don’t set an explicit Connection header the connection
actor will keep the connection alive if the client supports this (i.e. it either sent a Connection: Keep-Alive
header or advertised HTTP/1.1 capabilities without sending a Connection: close header).

The following response headers are managed by the spray-can layer itself and as such are ignored if you “manually”
add them to the response (you’ll see a warning in your logs):

• Content-Type

• Content-Length

• Transfer-Encoding

• Date

• Server

There are three exceptions:

1. Responses to HEAD requests that have an empty entity are allowed to contain a user-specified Content-Type
header.

2. Responses in ChunkedResponseStart messages that have an empty entity are allowed to contain a user-
specified Content-Type header.

3. Responses in ChunkedResponseStart messages are allowed to contain a user-specified
Content-Length header if spray.can.server.chunkless-streaming is enabled.

Note: The Content-Type header has special status in spray since its value is part of the HttpEntity model
class. Even though the header also remains in the headers list of the HttpRequest sprays higher layers (like
spray-routing) only work with the ContentType value contained in the HttpEntity.

HTTP Pipelining

spray-can fully supports HTTP pipelining. If the configured pipelining-limit is greater than one a connection
actor will accept several requests in a row (coming in across a single connection) and dispatch them to the application
even before the first one has been responded to. This means that several requests will potentially be handled by the
application at the same time.

Since in many asynchronous applications request handling times can be somewhat undeterministic spray-can takes
care of properly ordering all responses coming in from your application before sending them out to “the wire”. I.e.

5.2. spray-can 23



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

your application will “see” requests in the order they are coming in but is not required to itself uphold this order when
generating responses.

SSL Support

If enabled via the ssl-encryption config setting the spray-can connection actors pipe all IO traffic through
an SslTlsSupport module, which can perform transparent SSL/TLS encryption. This module is config-
ured via the implicit ServerSSLEngineProvider member on the Http.Bind command message. An
ServerSSLEngineProvider is essentially a function PipelineContext Option[SSLEngine], which
determines whether encryption is to be performed and, if so, which javax.net.ssl.SSLEngine instance is to
be used.

If you’d like to apply some custom configuration to your SSLEngine instances an easy way would be to bring a
custom engine provider into scope, e.g. like this:

import spray.io.ServerSSLEngineProvider

implicit val myEngineProvider = ServerSSLEngineProvider { engine =>
engine.setEnabledCipherSuites(Array("TLS_RSA_WITH_AES_256_CBC_SHA"))
engine.setEnabledProtocols(Array("SSLv3", "TLSv1"))
engine

}

EngineProvider creation also relies on an implicitly available SSLContextProvider, which is defined like this:

trait SSLContextProvider extends (PipelineContext Option[SSLContext])

The default SSLContextProvider simply provides an implicitly available “constant” SSLContext, by de-
fault the SSLContext.getDefault is used. This means that the easiest way to have the server use a custom
SSLContext is to simply bring one into scope implicitly:

import javax.net.ssl.SSLContext

implicit val mySSLContext: SSLContext = {
val context = SSLContext.getInstance("TLS")
// context.init(...)
context

}

5.2.5 HTTP Client APIs

Apart from the server-side HTTP abstractions spray-can also contains a client-side HTTP implementation that en-
ables your application to interact with other HTTP servers. And just like on the server side it is actor-based, fully
asynchronous, low-overhead and built on top of Akka IO / spray-io.

As the counterpart of the HTTP Server it shares all core features as well as the basic “low-level” philosophy with the
server-side constructs.

The spray-can client API offers three different levels of abstraction that you can work with (from lowest to highest
level):

Connection-level API

The connection-level API is the lowest-level client-side API spray-can provides. It gives you full control over when
HTTP connections are opened and closed and when requests are to be send across which connection. As such it offers
the highest flexibility at the cost of providing the least convenience.

24 Chapter 5. Documentation

http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Opening HTTP Connections

With the connection-level API you open a new HTTP connection to a given host by sending an Http.Connect
command message to the Http extensions as such:

IO(Http) ! Http.Connect("www.spray.io", port = 8080)

Apart from the host name and port the Http.Connect message also allows you to specify socket options and a
larger number of configuration settings for the connection.

Upon receipt of an Http.Connect message spray-can internally spawns a new HttpClientConnection
actor that manages a single HTTP connection across all of its lifetime. Your code never deals with the
HttpClientConnection actor class directly, in fact it is marked private to the spray-can package. All com-
munication with a connection actor happens purely via actor messages, the majority of which are defined in the
spray.can.Http object.

After a new connection actor has been started it tries to open a new TCP connection to the given endpoint and re-
sponds with an Http.Connected event message to the sender of the Http.Connect command as soon as
the connection has been successfully established. If the connection could not be opened for whatever reason an
Http.CommandFailed event is being dispatched instead and the connection actor is stopped.

Request-Response Cycle

Once the connection actor has responded with an Http.Connected event you can send it one or more spray-
http HttpRequestPart messages. The connection actor will serialize them across the connection and wait for
responses. As soon as a response for a request has been received it is dispatched as a HttpResponsePart instance
to the sender of the respective request.

After having received a response for a request the application can decide to send another request across the same
connection (i.e. to the same connection actor) or close the connection and (potentially) open a new one.

Closing Connections

Unless some kind of error (or timeout) occurs the connection actor will never actively close an established connection,
even if the response contains a Connection: close header. The application can decide to actively close a
connection by sending the connection actor one of the Http.CloseCommand messages described in the chapter
about Common Behavior.

Close notification events are dispatched to the senders of all requests that still have unfinished responses pending as
well as all actors that might have already sent Http.CloseCommand messages.

Timeouts

If no response to a request is received within the configured request-timeout period the connection actor closes
the connection and dispatches an Http.Closed event message to the senders of all requests that are currently open.

If the connection is closed after the configured idle-timeout has expired the connection actor simply closes the
connection and stops itself. If the application would like to be notified of such events it should “watch” the connection
actor and react to the respective Terminated events (which is a good idea in any case).

In order to change the respective config setting for this connection only the application can send the following messages
to the connection actor:

• spray.io.ConnectionTimeouts.SetIdleTimeout

5.2. spray-can 25

https://github.com/spray/spray/blob/master/spray-can/src/main/scala/spray/can/Http.scala#L29


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• spray.http.SetRequestTimeout

Host-level API

As opposed to the Connection-level API the host-level API relieves you from manually opening and closing each
individual HTTP connection. It autonomously manages a configurable pool of connections to one particular server.

Starting an HttpHostConnector

The core of this API is the HttpHostConnector actor, whose class, as with all other spray-can actors, you don’t
get in direct contact with from your application. All communication happens purely via actor messages, the majority
of which are defined in the spray.can.Http object.

You ask spray-can to start a new HttpHostConnector for a given host by sending an
Http.HostConnectorSetup message to the Http extension as such:

IO(Http) ! Http.HostConnectorSetup("www.spray.io", port = 80)

Apart from the host name and port the Http.HostConnectorSetup message also allows you to specify socket
options and a larger number of configuration settings for the connector and the connections it is to manage.

If there is no connector actor running for the given combination of hostname, port and settings spray-can will
start a new one, otherwise the existing one is going to be re-used. The connector will then respond with an
Http.HostConnectorInfo event message, which repeats the connectors ActorRef and setup command (for
easy matching against the result of an “ask”).

Using an HttpHostConnector

Once you’ve got a hold of the connectors ActorRef you can send it one or more spray-http HttpRequestPart
messages. The connector will send the request across one of the connections it manages according to the following
logic:

• if HTTP pipelining is not enabled (the default) the request is

– dispatched to the first idle connection in the pool if there is one

– dispatched to a newly opened connection if there is no idle one and less than the configured
max-connections have been opened so far

– queued and sent across the first connection that becomes available (i.e. either idle or unconnected) if all
available connections are currently busy with open requests

• if HTTP pipelining is enabled the request is dispatched to

– the first idle connection in the pool if there is one

– a newly opened connection if there is no idle one and less than the configured max-connections have
been opened so far

– the connection with the least open requests if all connections already have requests open

As soon as a response for a request has been received it is dispatched as a HttpResponsePart instance to the sender
of the respective request. If the server indicated that it doesn’t want to reuse the connection for other requests (either
via a Connection: close header on an HTTP/1.1 response or a missing Connection: Keep-Alive
header on an HTTP/1.0 response) the connector actor closes the connection after receipt of the response thereby
freeing up the “slot” for a new connection.

26 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-can/src/main/scala/spray/can/Http.scala#L29
http://en.wikipedia.org/wiki/HTTP_pipelining
http://en.wikipedia.org/wiki/HTTP_pipelining


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Retrying a Request

If the max-retries connector config setting is greater than zero the connector retries idempotent requests for which
a response could not be successfully retrieved. Idempotent requests are those whose HTTP method is defined to be
idempotent by the HTTP spec, which are all the ones currently modelled by spray-http except for the PATCH and
POST methods.

When a response could not be received for a certain request there are essentially three possible error scenarios:

1. The request got lost on the way to the server.

2. The server experiences a problem while processing the request.

3. The response from the server got lost on the way back.

Since the host connector cannot know which one of these possible reasons caused the problem and therefore PATCH
and POST requests could have already triggered a non-idempotent action on the server these requests cannot be retried.

In these cases, as well as when all retries have not yielded a proper response, the connector dispatches a
Status.Failure message with a RuntimeException holding a respective error message to the sender of
the request.

Connector Shutdown

The connector config contains an idle-timeout setting which specifies the time period after which an idle con-
nector, i.e. one without any open connections, will automatically shut itself down. Since, by default, the connections
in the connectors connection pool also have an idle-timeout active an unused connector will eventually be cleaned up
completely if left unused.

However, in order to speed up the shutdown a host connector can be sent an Http.CloseAll command, which
triggers an explicit closing of all connections. After all connections have been properly closed the connector will
dispatch an Http.ClosedAll event message to all senders of Http.CloseAll messages before stopping itself.

A subsequent sending of an identical Http.HostConnectorSetup command to the Http extension will then
trigger the creation of a fresh connector instance.

Request-level API

The request-level API is the most convenient way of using spray-can‘s client-side. It internally builds upon the Host-
level API to provide you with a simple and easy-to-use way of retrieving HTTP responses from remote servers.

Just send an HttpRequest instance to the Http extensions like this:

import scala.concurrent.Future
import scala.concurrent.duration._

import akka.actor.ActorSystem
import akka.util.Timeout
import akka.pattern.ask
import akka.io.IO

import spray.can.Http
import spray.http._
import HttpMethods._

implicit val system: ActorSystem = ActorSystem()
implicit val timeout: Timeout = Timeout(15.seconds)
import system.dispatcher // implicit execution context

5.2. spray-can 27



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

val response: Future[HttpResponse] =
(IO(Http) ? HttpRequest(GET, Uri("http://spray.io"))).mapTo[HttpResponse]

// or, with making use of spray-httpx
import spray.httpx.RequestBuilding._

val response2: Future[HttpResponse] =
(IO(Http) ? Get("http://spray.io")).mapTo[HttpResponse]

The request you send to IO(Http) must have an absolute URI or contain a Host header. spray-can will forward it
to the host connector (see Host-level API) for the target host (and start it up if it is not yet running).

If you want to specify config settings for either the host connector or the underlying connections that differ from what
you have configured in your application.conf you can either “prime” a host connector by sending an explicit
Http.HostConnectorSetup command before issuing the first request to this host or send a tuple (Request,
Http.HostConnectorSetup) combining the request with the Http.HostConnectorSetup command. The
latter also allows the request to have a relative URI and no host header since the target host is already specified with
the connector setup command.

All other aspects of the request-level API are identical to the host-level counterpart.

Basic API Structure

Depending on the specific needs of your use case you should pick the

Connection-level API for full-control over when HTTP connections are opened/closed and how requests are sched-
uled across them.

Host-level API for letting spray-can manage a connection-pool for one specific host.

Request-level API for letting spray-can take over all connection management.

You can interact with spray-can on different levels at the same time and, independently of which API level you choose,
spray-can will happily handle many thousand concurrent connections to a single or many different hosts.

Chunked Requests

While the host- and request-level APIs do not currently support chunked (streaming) HTTP requests the connection-
level API does. Alternatively to a single HttpRequest the application can choose to send this sequence of individual
messages:

• One ChunkedRequestStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The connection actor will render these as one logical HTTP request with Transfer-Encoding: chunked.
The timer for checking request timeouts (if configured to non-zero) only starts running when the final
ChunkedMessageEnd message was sent out.

Chunked Responses

Chunked (streaming) responses are supported by all three API levels. If the
response-chunk-aggregation-limit connection config setting is set to zero the individual response
parts of chunked requests are dispatched to the application as they come in. In these cases a full response consists of
the following messages:

28 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• One ChunkedResponseStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The timer for checking request timeouts (if configured to non-zero) will stop running as soon as the initial
ChunkedResponseStart message has been received, i.e. there is currently no timeout checking for and in be-
tween individual response chunks.

HTTP Headers

When a spray-can connection actor receives an HTTP response it tries to parse all its headers into their respective
spray-http model classes. No matter whether this succeeds or not, the connection actor will always pass on all received
headers to the application. Unknown headers as well as ones with invalid syntax (according to spray‘s header parser)
will be made available as RawHeader instances. For the ones exhibiting parsing errors a warning message is logged
depending on the value of the illegal-header-warnings config setting.

The following message headers are managed by the spray-can layer itself and as such are ignored if you “manually”
add them to an outgoing request:

• Content-Type

• Content-Length

• Transfer-Encoding

There are two exceptions for requests in ChunkedRequestStart messages:

1. They are allowed to contain a user-specified Content-Type header if their entity is empty.

2. They must contain a user-specified Content-Length header if spray.can.client.chunkless-streaming
is enabled. This Content-Length header must fit the total length of all requests chunks.

Additionally spray-can will render a

• Host request header if none is explicitly added.

• User-Agent default request header if none is explicitly defined. The default value can be configured with the
spray.can.client.user-agent-header configuration setting.

Note: The Content-Type header has special status in spray since its value is part of the HttpEntity model
class. Even though the header also remains in the headers list of the HttpResponse sprays higher layers (like
spray-client) only work with the ContentType value contained in the HttpEntity.

SSL Support

SSL support is enabled

• for the connection-level API by setting Http.Connect(sslEncryption = true) when connecting to
a server

• for the host-level API by setting Http.HostConnectorSetup(sslEncryption = true) when cre-
ating a host connector

• for the request-level API by using an https URL in the request

5.2. spray-can 29



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Particular SSL settings can be configured via the implicit ClientSSLEngineProvider member on the
Http.Connect and Http.HostConnectorSetup command messages. An ClientSSLEngineProvider
is essentially a function PipelineContext Option[SSLEngine] which determines whether encryption is
to be performed and, if so, which javax.net.ssl.SSLEngine instance is to be used. By returning None the
ClientSSLEngineProvider can decide to disable SSL support even if SSL support was requested by the means
described above.

If you’d like to apply some custom configuration to your SSLEngine instances an easy way would be to bring a
custom engine provider into scope, e.g. like this:

import spray.io.ClientSSLEngineProvider

implicit val myEngineProvider = ClientSSLEngineProvider { engine =>
engine.setEnabledCipherSuites(Array("TLS_RSA_WITH_AES_256_CBC_SHA"))
engine.setEnabledProtocols(Array("SSLv3", "TLSv1"))
engine

}

EngineProvider creation also relies on an implicitly available SSLContextProvider, which is defined like this:

trait SSLContextProvider extends (PipelineContext Option[SSLContext])

The default SSLContextProvider simply provides an implicitly available “constant” SSLContext, by de-
fault the SSLContext.getDefault is used. This means that the easiest way to have the server use a custom
SSLContext is to simply bring one into scope implicitly:

import javax.net.ssl.SSLContext

implicit val mySSLContext: SSLContext = {
val context = SSLContext.getInstance("TLS")
// context.init(...)
context

}

Redirection Following

Automatic redirection following for 3xx responses is supported by setting configuring the
spray.can.host-connector.max-redirects setting. This is the logic that is then applied:

• If set to zero redirection responses will not be followed, i.e. they’ll be returned to the user as is.

• If set to a value > zero redirection responses will be followed up to the given number of times.

• If the redirection chain is longer than the configured value the first redirection response that is is not followed
anymore is returned to the user as is.

By default max-redirects is set to 0.

Since this setting is at the host level, it is possible to configure a different number of max-redirects for different
hosts (see Request-level API). In this situation the max-redirects configured for the host of the initial request is
respected for the entire redirection chain. This is true even if redirection means changing to another host.

Which redirects are followed?

This table shows which http method is used to follow redirects for given request methods and response status codes.
Any request method and response status code combination not in the table will not result in redirection following and
the response will be returned as is.

30 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Request Method Response Status Code Redirection Method Specification
GET / HEAD 301 / 302 / 303 Original request method RFC 2616
Any (except GET / HEAD) 302 / 303 GET RFC 2616
Any 307 Original request method HttpBis Draft
Any 308 Original request method 308 Draft

5.2.6 Common Behavior

The spray-can HTTP Server and HTTP Client APIs share a number of command and event messages that are explained
in this chapter.

Closing Connections

Server- and client-side connection actors can be sent one of three defined Http.CloseCommand messages in order
to trigger the closing of an HTTP connection. They mirror the TCP-level commands and events from Akka IO and
have the following semantics:

Http.Close A “regular” close. Potentially pending unsent data are flushed to the connection before a TCP FIN
is sent. The peers FIN ACK is not awaited. If the close is successful the sender will be notified with an
Http.Closed event message.

Http.ConfirmedClose The closing of the connection is intially started by flushing pending writes and sending
a TCP FIN to the peer. Data will continue to be received until the peer closes the connection too with its own
FIN. If the close is successful the sender will be notified with an Http.ConfirmedClosed event message.

Http.Abort Immediately terminates the connection by sending a RST message to the peer. Pending writes are not
flushed. If the close is successful the sender will be notified with an Http.Aborted event message.

In addition to the confirmation events mentioned above the connection actor will dispatch two other events derived
from the Http.ConnectionClosed trait in certain cases:

Http.PeerClosed Dispatched when the remote peer has closed the connection without “our” side having initiated
the close first.

Http.ErrorClosed Dispatched whenever an error occurred that forced the connection to be closed.

ACKed Sends

If required the server- and client-side connection actors can confirm the successful delivery of an HTTP message
(part) to the OS network layer by replying with a “send ACK” message. The application can request a send ACK by
modifying a message part with the withAck method. For example, the following handler logic receives the String
“ok” as an actor message after the response has been successfully written to the connections socket:

def receive = {
case HttpRequest(GET, Uri.Path("/ping"), _, _, _) =>
sender ! HttpResponse(entity = "PONG").withAck("ok")

case "ok" => println("Response was sent successfully")
}

Such ACK messages are especially helpful for triggering the sending of the next message part in a request- or response
streaming scenario since with such a design the application will never produce more data than the network can handle.

Send ACKs are always dispatched to the actor which sent the respective message (part). They are only supported
on the server-side as well as on the client-side connection-level API (i.e. not currently on the client-side host- and
request-level APIs).

5.2. spray-can 31

http://tools.ietf.org/html/rfc2616#section-10.3
http://tools.ietf.org/html/rfc2616#section-10.3
https://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-25#section-6.4.7
http://tools.ietf.org/html/draft-reschke-http-status-308-07#section-3
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-tcp.html#Closing_connections


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.2.7 Examples

The /examples/spray-can/ directory of the spray repository contains a number of example projects for spray-can, which
are described here.

simple-http-client

This example demonstrates how you can use the three different client-side API levels for performing a simple re-
quest/response cycle.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-http-client" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-http-client and run sequentially “inside” of SBT.)

simple-http-server

This examples implements a very simple web-site built with the spray-can HTTP Server. It shows off various features
like streaming, stats support and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-http-server" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-http-server and run sequentially “inside” of SBT.)

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

curl -v 127.0.0.1:8080/stop

32 Chapter 5. Documentation

https://github.com/spray/spray/tree/release/1.1/examples/spray-can
http://127.0.0.1:8080/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

server-benchmark

This example implements a very simple “ping/pong” server for benchmarking purposes, that mirrors the “JSON seri-
alization” test setup from the techempower benchmark.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project server-benchmark" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project server-benchmark and run sequentially “inside” of SBT.)

4. Use a load-generation tool like ab, weighttp, wrk or the like to fire test requests, e.g.:

wrk -t4 -c100 -d10 http://127.0.0.1:8080/ping

If you start the server with re-start rather than run it will run in a forked JVM that has -verbose:gc and
-XX:+PrintCompilation flags set, so you can see how often GC is performed and whether the JIT compiler is
“done” with compiling all the hot spots.

5.3 spray-client

spray-client provides high-level HTTP client functionality by adding another logic layer on top of the relatively basic
spray-can HTTP Client APIs. It doesn’t yet provide all the features that we’d like to include eventually, but it should
already be of some utility for many applications.

Currently it allows you to wrap any one of the three spray-can client-side API levels with a pipelining logic, which
provides for:

• Convenient request building

• Authentication

• Compression / Decompression

• Marshalling / Unmarshalling from and to your custom types

Currently, HTTP streaming (i.e. chunked transfer encoding) is not yet supported on the spray-client level (even though
the underlying spray-can HTTP Client APIs do support it (the host- and request-level APIs only for responses)),
i.e. you cannot send chunked requests and the response-chunk-aggregation-limit config setting for the
underlying transport must be non-zero).

5.3.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-client depends on

• spray-can

• spray-http

5.3. spray-client 33

http://httpd.apache.org/docs/2.2/programs/ab.html
http://redmine.lighttpd.net/projects/weighttp/wiki
https://github.com/wg/wrk


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• spray-httpx

• spray-util

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

5.3.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-client into your classpath.

5.3.3 Usage

The simplest of all use cases is this:

import spray.http._
import spray.client.pipelining._

implicit val system = ActorSystem()
import system.dispatcher // execution context for futures

val pipeline: HttpRequest => Future[HttpResponse] = sendReceive

val response: Future[HttpResponse] = pipeline(Get("http://spray.io/"))

The central element of a spray-client pipeline is sendReceive, which produces a function HttpRequest =>
Future[HttpResponse] (this function type is also aliased to SendReceive). When called without parameters
sendReceive will automatically use the IO(Http) extension of an implicitly available ActorSystem to access
the spray-can Request-level API. All requests must therefore either carry an absolute URI or an explicit Host header.

In order to wrap pipelining around spray-can‘s Host-level API you need to tell sendReceive which host connector
to use:

import akka.io.IO
import akka.pattern.ask
import spray.can.Http
import spray.http._
import spray.client.pipelining._

implicit val system = ActorSystem()
import system.dispatcher // execution context for futures

val pipeline: Future[SendReceive] =
for (
Http.HostConnectorInfo(connector, _) <-
IO(Http) ? Http.HostConnectorSetup("www.spray.io", port = 80)

) yield sendReceive(connector)

val request = Get("/")
val response: Future[HttpResponse] = pipeline.flatMap(_(request))

You can then fire requests with relative URIs and without Host header into the pipeline.

A pipeline of type HttpRequest => Future[HttpResponse] is nice start but leaves the creation of requests
and interpretation of responses completely to you. Many times you actually want to send and/or receive custom
objects that need to be serialized to HTTP requests or deserialized from HTTP responses. Check out this snippet for
an example of what spray-client pipelining can do for you in that regard:

34 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

import spray.http._
import spray.json.DefaultJsonProtocol
import spray.httpx.encoding.{Gzip, Deflate}
import spray.httpx.SprayJsonSupport._
import spray.client.pipelining._

case class Order(id: Int)
case class OrderConfirmation(id: Int)

object MyJsonProtocol extends DefaultJsonProtocol {
implicit val orderFormat = jsonFormat1(Order)
implicit val orderConfirmationFormat = jsonFormat1(OrderConfirmation)

}
import MyJsonProtocol._

implicit val system = ActorSystem()
import system.dispatcher // execution context for futures

val pipeline: HttpRequest => Future[OrderConfirmation] = (
addHeader("X-My-Special-Header", "fancy-value")
~> addCredentials(BasicHttpCredentials("bob", "secret"))
~> encode(Gzip)
~> sendReceive
~> decode(Deflate)
~> unmarshal[OrderConfirmation]

)
val response: Future[OrderConfirmation] =

pipeline(Post("http://example.com/orders", Order(42)))

This defines a more complex pipeline that takes an HttpRequest, adds headers and compresses its entity before
dispatching it to the target server (the sendReceive element of the pipeline). The response coming back is then
decompressed and its entity unmarshalled.

When you import spray.client.pipelining._ you not only get easy access to sendReceive but also
all elements of the spray-httpx Request Building and Response Transformation traits. Therefore you can easily create
requests via something like Post("/orders", Order(42)), which is not only shorter but also provides for
automatic marshalling of custom types.

5.3.4 Example

The /examples/spray-client/ directory of the spray repository contains an example project for spray-client.

simple-spray-client

This example shows off how to use spray-client by querying Google’s Elevation API to retrieve the elevation of Mt.
Everest.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

5.3. spray-client 35

https://github.com/spray/spray/tree/release/1.1/examples/spray-client


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

3. Run SBT:

sbt "project simple-spray-client" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-spray-client and run sequentially “inside” of SBT.)

5.4 spray-http

The spray-http module contains a fully immutable, case-class based model of the major HTTP data structures, like
HTTP requests, responses and common headers. It also includes a parser for the latter, which is able to construct the
more structured header models from raw unstructured header name/value pairs.

5.4.1 Dependencies

spray-http depends on akka-actor (with ‘provided’ scope, i.e. you need to pull it in yourself). It also depends on
parboiled, a lightweight PEG parsing library providing the basis for the header parser. Since parboiled is also written
and maintained by the members of the spray team it’s not an “outside” dependency that we have no control over.

5.4.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-http into your classpath.

Afterwards just import spray.http._ to bring all relevant identifiers into scope.

5.4.3 Overview

Since spray-http provides the central HTTP data structures for spray you will find the following import in quite a few
places around the spray code base (and probably your own code as well):

import spray.http._

This brings in scope all of the relevant things that are defined here and that you’ll want to work with, mainly:

• HttpRequest and HttpResponse, the central message models

• ChunkedRequestStart, ChunkedResponseStart, MessageChunk and ChunkedMessageEnd
modeling the different message parts of request/response streams

• HttpHeaders, an object containing all the defined HTTP header models

• Supporting types like Uri, HttpMethods, MediaTypes, StatusCodes, etc.

A common pattern is that the model of a certain entity is represented by an immutable type (class or trait), while the
actual instances of the entity defined by the HTTP spec live in an accompanying object carrying the name of the type
plus a trailing ‘s’.

For example:

• The defined HttpMethod instances live in the HttpMethods object.

• The defined HttpCharset instances live in the HttpCharsets object.

• The defined HttpEncoding instances live in the HttpEncodings object.

• The defined HttpProtocol instances live in the HttpProtocols object.

36 Chapter 5. Documentation

http://parboiled.org
http://parboiled.org
https://github.com/spray/spray/tree/release/1.1/spray-http/src/main/scala/spray/http


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• The defined MediaType instances live in the MediaTypes object.

• The defined StatusCode instances live in the StatusCodes object.

You get the point.

In order to develop a better understanding for how spray models HTTP you probably should take some time to browse
around the spray-http sources (ideally with an IDE that supports proper code navigation).

5.4.4 Content-Type Header

One thing worth highlighting is the special treatment of the HTTP Content-Type header. Since the binary content
of HTTP message entities can only be properly interpreted when the corresponding content-type is known spray-http
puts the content-type value very close to the entity data. The HttpEntity.NonEmpty type (the non-empty variant
of the HttpEntity) is essentially little more than a tuple of the ContentType and the entity’s bytes. All logic in
spray that needs to access the content-type of an HTTP message always works with the ContentType value in the
HttpEntity. Potentially existing instances of the Content-Type header in the HttpMessage‘s header list are
ignored!

5.4.5 Custom Media-Types

spray-http defines the most important media types from the IANA MIME media type registry in the MediaTypes
object, which also acts as a registry that you can register your own CustomMediaType instances with:

import spray.http.MediaTypes._

val MarkdownType = register(
MediaType.custom(
mainType = "text",
subType = "x-markdown",
compressible = true,
binary = false,
fileExtensions = Seq("markdown", "mdown", "md")))

Once registered the custom type will be properly resolved, e.g. for incoming requests by spray-routing or incoming
responses by spray-client. File extension resolution (as used for example by the FileAndResourceDirectives) will work
as expected.

5.5 spray-httpx

The spray-httpx module contains all higher-level logic for working with HTTP messages, which is not specific to
either the server-side (spray-routing) or client-side (spray-client) modules on top and therefore (potentially) used by
both of them.

5.5.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-httpx depends on

• spray-http

• spray-util

• spray-io (only required until the upgrade to Akka 2.2, will go away afterwards)

5.5. spray-httpx 37

https://github.com/spray/spray/tree/release/1.1/spray-http/src/main/scala/spray/http
http://www.iana.org/assignments/media-types/index.html
https://github.com/spray/spray/blob/master/spray-http/src/main/scala/spray/http/MediaType.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• MIME pull

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• Optionally (you need to provide these if you’d like to use the respective spray-httpx feature):

– spray-json (for SprayJsonSupport)

– lift-json (for LiftJsonSupport)

– twirl-api (for TwirlSupport)

– json4s-native (for Json4sSupport)

– json4s-jackson (for Json4sJacksonSupport)

5.5.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-httpx into your classpath.

Afterwards you can use the following imports to bring all relevant identifiers into scope:

• import spray.httpx.encoding._ for everything related to (de)compression

• import spray.httpx.marshalling._ for everything related to marshalling

• import spray.httpx.unmarshalling._ for everything related to unmarshalling

• import spray.httpx.RequestBuilding for RequestBuilding

• import spray.httpx.ResponseTransformation for ResponseTransformation

• import spray.httpx.Json4sJacksonSupport for Json4sJacksonSupport

• import spray.httpx.Json4sSupport for Json4sSupport

• import spray.httpx.LiftJsonSupport for LiftJsonSupport

• import spray.httpx.SprayJsonSupport for SprayJsonSupport

• import spray.httpx.TwirlSupport for TwirlSupport

5.5.3 Marshalling

“Marshalling” is the process of converting a higher-level (object) structure into some kind of lower-level representa-
tion, often a “wire format”. Other popular names for it are “Serialization” or “Pickling”.

In spray “Marshalling” means the conversion of an object of type T into an HttpEntity, which forms the “entity
body” of an HTTP request or response (depending on whether used on the client or server side).

Marshalling for instances of type T is performed by a Marshaller[T], which is defined like this:

trait Marshaller[-T] {
def apply(value: T, ctx: MarshallingContext)

}

So, a Marshaller is not a plain function T => HttpEntity, as might be initially expected. Rather it uses the
given MarshallingContext to drive the marshalling process from its own side. There are three reasons why spray
Marshallers are designed in this way:

• Marshalling on the server-side must support content negotiation, which is easier to implement if the marshaller
drives the process.

38 Chapter 5. Documentation

http://mimepull.java.net/
https://github.com/spray/spray-json
https://github.com/lift/lift/tree/master/framework/lift-base/lift-json/
https://github.com/spray/twirl
https://github.com/json4s/json4s
https://github.com/json4s/json4s
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/marshalling/MarshallingContext.scala
http://en.wikipedia.org/wiki/Content_negotiation


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• Marshallers can delay their actions and complete the marshalling process from another thread at another time
(e.g. when the result of a Future arrives), which is not something that ordinary functions can do. (We could have
the Marshaller return a Future, but this would add overhead to the majority of cases that do not require delayed
execution.)

• Marshallers can produce more than one response part, whereby the sequence of response chunks is available as
a pull-style stream or from a push-style producer. Both these approaches need to be supported.

Default Marshallers

spray-httpx comes with pre-defined Marshallers for the following types:

• BasicMarshallers

– Array[Byte]

– Array[Char]

– String

– NodeSeq

– Throwable

– spray.http.FormData

– spray.http.HttpEntity

• MetaMarshallers

– Option[T]

– Either[A, B]

– Try[T]

– Future[T]

– Stream[T]

• MultipartMarshallers

– spray.http.MultipartContent

– spray.http.MultipartFormData

Implicit Resolution

Since the marshalling infrastructure uses a type class based approach Marshaller instances for a type T have to
be available implicitly. The implicits for all the default Marshallers defined by spray-httpx are provided through the
companion object of the Marshaller trait. This means that they are always available and never need to be explicitly
imported. Additionally, you can simply “override” them by bringing your own custom version into local scope.

Custom Marshallers

spray-httpx gives you a few convenience tools for constructing Marshallers for your own types. One is the
Marshaller.of helper, which is defined as such:

def of[T](marshalTo: ContentType*)
(f: (T, ContentType, MarshallingContext) => Unit): Marshaller[T]

5.5. spray-httpx 39

https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/marshalling/BasicMarshallers.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/marshalling/MetaMarshallers.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/marshalling/MultipartMarshallers.scala
http://stackoverflow.com/questions/5408861/what-are-type-classes-in-scala-useful-for


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The default StringMarshaller for example is defined with it:

// prefer UTF-8 encoding, but also render with other encodings if the client requests them
implicit val StringMarshaller = stringMarshaller(ContentTypes.`text/plain(UTF-8)`, ContentTypes.`text/plain`)

def stringMarshaller(contentType: ContentType, more: ContentType*): Marshaller[String] =
Marshaller.of[String](contentType +: more: _*) { (value, contentType, ctx)
ctx.marshalTo(HttpEntity(contentType, value))

}

As another example, here is a Marshaller definition for a custom type Person:

import spray.http._
import spray.httpx.marshalling._

val `application/vnd.acme.person` =
MediaTypes.register(MediaType.custom("application/vnd.acme.person"))

case class Person(name: String, firstName: String, age: Int)

object Person {
implicit val PersonMarshaller =
Marshaller.of[Person](`application/vnd.acme.person`) { (value, contentType, ctx) =>
val Person(name, first, age) = value
val string = "Person: %s, %s, %s".format(name, first, age)
ctx.marshalTo(HttpEntity(contentType, string))

}
}

marshal(Person("Bob", "Parr", 32)) ===
Right(HttpEntity(`application/vnd.acme.person`, "Person: Bob, Parr, 32"))

As can be seen in this example you best define the Marshaller for T in the companion object of T. This way your
marshaller is always in-scope, without any import tax.

Deriving Marshallers

Sometimes you can save yourself some work by reusing existing Marshallers for your custom ones. The idea is to
“wrap” an existing Marshaller with some logic to “re-target” it to your type.

In this regard wrapping a Marshaller can mean one or both of the following two things:

• Transform the input before it reaches the wrapped Marshaller

• Transform the output of the wrapped Marshaller

You can do both, but the existing support infrastructure favors the first over the second. The
Marshaller.delegate helper allows you to turn a Marshaller[B] into a Marshaller[A] by providing a
function A => B:

def delegate[A, B](marshalTo: ContentType*)
(f: A => B)
(implicit mb: Marshaller[B]): Marshaller[A]

This is used, for example, by the NodeSeqMarshaller, which delegates to the StringMarshaller like this:

implicit val NodeSeqMarshaller =
Marshaller.delegate[NodeSeq, String](`text/xml`, `application/xml`,
`text/html`, `application/xhtml+xml`)(_.toString)

40 Chapter 5. Documentation

http://vimeo.com/20308847


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

There is also a second overload of the delegate helper that takes a function (A, ContentType) => B rather
than a function A => B. It’s helpful if your input conversion requires access to the ContentType that is marshalled
to.

If you want the second wrapping type, transformation of the output, things are a bit harder (and less efficient), since
Marshallers produce HttpEntities rather than Strings. An HttpEntity contains the serialized result, which is essen-
tially an Array[Byte] and a ContentType. So, for example, prepending a string to the output of the underlying
Marshaller would entail deserializing the bytes into a string, prepending your prefix and reserializing into a byte
array.... not pretty and quite inefficient. Nevertheless, you can do it. Just produce a custom MarshallingContext,
which wraps the original one with custom logic, and pass it to the inner Marshaller. However, a general solution
would also require you to think about the handling of chunked responses, errors, etc.

Because the second form of wrapping is less attractive there is no real helper infrastructure for it. We generally
do not want to encourage such type of design. (With one exception: Simply overriding the Content-Type of an-
other Marshaller can be done efficiently. This is why the MarshallingContext already comes with a
withContentTypeOverriding copy helper.)

ToResponseMarshaller

The plain Marshaller[T] is agnostic to whether it is used on the server- or on the client-side. This means that it
can be used to produce the entities (and additional headers) for responses as well as requests.

Sometimes, however, this is not enough. If you know that you need to only marshal to HttpResponse instances
(e.g. because you only use spray on the server-side) you can also write a ToResponseMarshaller[T] for your
type. This more specialized marshaller allows you to produce the complete HttpResponse instance rather than
only its entity. As such the marshaller can also set the status code of the response (which doesn’t exist on the request
side).

When looking for a way to marshal a custom type T spray (or rather the Scala compiler) first looks for a
ToResponseMarshaller[T] for the type. Only if none is found will an in-scope Marshaller[T] be used.

5.5.4 Unmarshalling

“Unmarshalling” is the process of converting some kind of a lower-level representation, often a “wire format”, into a
higher-level (object) structure. Other popular names for it are “Deserialization” or “Unpickling”.

In spray “Unmarshalling” means the conversion of an HttpEntity, the model class for the entity body of an HTTP
request or response (depending on whether used on the client or server side), into an object of type T.

Unmarshalling for instances of type T is performed by an Unmarshaller[T], which is defined like this:

type Unmarshaller[T] = Deserializer[HttpEntity, T]
trait Deserializer[A, B] extends (A => Deserialized[B])
type Deserialized[T] = Either[DeserializationError, T]

So, an Unmarshaller is basically a function HttpEntity => Either[DeserializationError, T].
When compared to their counterpart, Marshallers, Unmarshallers are somewhat simpler, since they are straight func-
tions and do not have to deal with chunk streams (which are currently not supported in unmarshalling) or delayed
execution.)

Default Unmarshallers

spray-httpx comes with pre-defined Unmarshallers for the following types:

• Array[Byte]

5.5. spray-httpx 41



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• Array[Char]

• String

• NodeSeq

• Option[T]

• spray.http.FormData

• spray.http.HttpForm

• spray.http.MultipartContent

• spray.http.MultipartFormData

The relevant sources are:

• Deserializer

• BasicUnmarshallers

• MetaUnmarshallers

• FormDataUnmarshallers

Implicit Resolution

Since the unmarshalling infrastructure uses a type class based approach Unmarshaller instances for a type T
have to be available implicitly. The implicits for all the default Unmarshallers defined by spray-httpx are pro-
vided through the companion object of the Deserializer trait (since Unmarshaller[T] is just an alias for
a Deserializer[HttpEntity, T]). This means that they are always available and never need to be explicitly
imported. Additionally, you can simply “override” them by bringing your own custom version into local scope.

Custom Unmarshallers

spray-httpx gives you a few convenience tools for constructing Unmarshallers for your own types. One is the
Unmarshaller.apply helper, which is defined as such:

def apply[T](unmarshalFrom: ContentTypeRange*)
(f: PartialFunction[HttpEntity, T]): Unmarshaller[T]

The default NodeSeqUnmarshaller for example is defined with it:

implicit val NodeSeqUnmarshaller =
Unmarshaller[NodeSeq](`text/xml`, `application/xml`, `text/html`, `application/xhtml+xml`) {
case HttpEntity.NonEmpty(contentType, data)

XML.withSAXParser(createSAXParser())
.load(new InputStreamReader(new ByteArrayInputStream(data.toByteArray), contentType.charset.nioCharset))

case HttpEntity.Empty NodeSeq.Empty
}

As another example, here is an Unmarshaller definition for a custom type Person:

import spray.httpx.unmarshalling._
import spray.util._
import spray.http._

val `application/vnd.acme.person` =
MediaTypes.register(MediaType.custom("application/vnd.acme.person"))

42 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/unmarshalling/Deserializer.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/unmarshalling/BasicUnmarshallers.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/unmarshalling/MetaUnmarshallers.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/unmarshalling/FormDataUnmarshallers.scala
http://stackoverflow.com/questions/5408861/what-are-type-classes-in-scala-useful-for


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

case class Person(name: String, firstName: String, age: Int)

object Person {
implicit val PersonUnmarshaller =
Unmarshaller[Person](`application/vnd.acme.person`) {
case HttpEntity.NonEmpty(contentType, data) =>

// unmarshal from the string format used in the marshaller example
val Array(_, name, first, age) =
data.asString.split(":,".toCharArray).map(_.trim)

Person(name, first, age.toInt)

// if we had meaningful semantics for the HttpEntity.Empty
// we could add a case for the HttpEntity.Empty:
// case HttpEntity.Empty => ...

}
}

val body = HttpEntity(`application/vnd.acme.person`, "Person: Bob, Parr, 32")
body.as[Person] === Right(Person("Bob", "Parr", 32))

As can be seen in this example you best define the Unmarshaller for T in the companion object of T. This way
your unmarshaller is always in-scope, without any import tax.

Deriving Unmarshallers

Unmarshaller.delegate

Sometimes you can save yourself some work by reusing existing Unmarshallers for your custom ones. The idea is to
“wrap” an existing Unmarshaller with some logic to “re-target” it to your type.

In this regard “wrapping” a Unmarshaller can mean one or both of the following two things:

• Transform the input HttpEntity before it reaches the wrapped Unmarshaller

• Transform the output of the wrapped Unmarshaller

You can do both, but the existing support infrastructure favors the latter over the former. The
Unmarshaller.delegate helper allows you to turn an Unmarshaller[A] into an Unmarshaller[B] by
providing a function A => B:

def delegate[A, B](unmarshalFrom: ContentTypeRange*)
(f: A => B)
(implicit mb: Unmarshaller[A]): Unmarshaller[B]

For example, by using Unmarshaller.delegate the Unmarshaller[Person] from the example above
could be simplified to this:

implicit val SimplerPersonUnmarshaller =
Unmarshaller.delegate[String, Person](`application/vnd.acme.person`) { string =>
val Array(_, name, first, age) = string.split(":,".toCharArray).map(_.trim)
Person(name, first, age.toInt)

}

Unmarshaller.forNonEmpty

In addition to Unmarshaller.delegate there is also another “deriving Unmarshaller builder” called
Unmarshaller.forNonEmpty. It “modifies” an existing Unmarshaller to not accept empty entities.

5.5. spray-httpx 43

http://vimeo.com/20308847


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

For example, the default NodeSeqMarshaller (see above) accepts empty entities as a valid representation of
NodeSeq.Empty. It might be, however, that in your application context empty entities are not allowed. In order to
achieve this, instead of “overriding” the existing NodeSeqMarshaller with an all-custom re-implementation you
could be doing this:

implicit val myNodeSeqUnmarshaller = Unmarshaller.forNonEmpty[NodeSeq]

HttpEntity(MediaTypes.`text/xml`, "<xml>yeah</xml>").as[NodeSeq] === Right(<xml>yeah</xml>)
HttpEntity.Empty.as[NodeSeq] === Left(ContentExpected)

More specific Unmarshallers

The plain Unmarshaller[T] is agnostic to whether it is used on the server- or on the client-side. This means
that it can be used to deserialize the entities from requests as well as responses. Also, the only information that an
Unmarshaller[T] has access to for its job is the message entity. Sometimes this is not enough.

FromMessageUnmarshaller

If you need access to the message headers during unmarshalling you can write an
FromMessageUnmarshaller[T] for your type. It is defined as such:

type FromMessageUnmarshaller[T] = Deserializer[HttpMessage, T]

and allows access to all members of the HttpMessage superclass of the HttpRequest and HttpResponse
types, most importantly: the message headers. Since, like the plain Unmarshaller[T], it can deserialize requests
as well as responses it can be used on the server- as well as the client-side.

An in-scope FromMessageUnmarshaller[T] takes precedence before any potentially available plain
Unmarshaller[T].

FromRequestUnmarshaller

The FromRequestUnmarshaller[T] is the most “powerful” unmarshaller that can be used on the server-side
(and only there). It is defined like this:

type FromRequestUnmarshaller[T] = Deserializer[HttpRequest, T]

and allows access to all members of the incoming HttpRequest instance.

An in-scope FromRequestUnmarshaller[T] takes precedence before any potentially available
FromMessageUnmarshaller[T] or plain Unmarshaller[T].

FromResponseUnmarshaller

The FromResponseUnmarshaller[T] is the most “powerful” unmarshaller that can be used on the client-side
(and only there). It is defined like this:

type FromResponseUnmarshaller[T] = Deserializer[HttpResponse, T]

and allows access to all members of the incoming HttpResponse instance.

An in-scope FromResponseUnmarshaller[T] takes precedence before any potentially available
FromMessageUnmarshaller[T] or plain Unmarshaller[T].

44 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.5.5 (De)compression

The HTTP spec defines a Content-Encoding header, which signifies whether the entity body of an HTTP message
is “encoded” and, if so, by which algorithm. The only commonly used content encodings, apart from identity (i.e.
plain text), are compression algorithms.

Currently spray supports the compression and decompression of HTTP requests and responses with the gzip or
deflate encodings. The core logic for this, which is shared by the spray-client and spray-routing modules for the
client- and server-side (respectively), lives in the spray.httpx.encoding package.

The support is not enabled by default, but must be explicitly requested. For server configuration, see When to
use which decompression directive?. For client configuration, see spray.client.pipelining.decode and
spray.httpx.ResponseTransformation.

Compression of Chunk Streams

Properly combining HTTP compression with the chunked HTTP/1.1 Transfer-Encoding can be a little tricky. For
optimal results the peer sending the message (i.e. the client or the server) should use a single compression context
across all chunks, so that common patterns shared by several chunks contribute to a high compression ratio. At the
same time the decompressor at the other end must be able to properly decompress each chunk as it arrives.

In order to achieve this the compressor must properly flush its compression stream after each chunk, something that
the GZIP- and DeflaterOutputStream implementations of the Java 6 JDK unfortunately do not support correctly (see
this JDK bug, fixed only in Java 7). sprays compression implementation jumps through a few hoops to achieve the
desired behavior also under Java 6, with no cost to you as the user.

5.5.6 Request Building

When you work with spray you’ll occasionally want to construct HTTP requests, e.g. when talking to an HTTP server
with spray-client or when writing tests for your server-side API with spray-testkit.

For making request construction more convenient spray-httpx provides the RequestBuilding trait, that defines a simple
DSL for assembling HTTP requests in a concise and readable manner.

Take a look at these examples:

import spray.httpx.RequestBuilding._
import spray.http._
import HttpMethods._
import HttpHeaders._
import ContentTypes._

// simple GET requests
Get() === HttpRequest(method = GET)
Get("/abc") === HttpRequest(method = GET, uri = "/abc")

// as second argument you can specify an object that is
// to be marshalled using the in-scope marshaller for the type
Put("/abc", "foobar") === HttpRequest(method = PUT, uri = "/abc", entity = "foobar")

implicit val intMarshaller = Marshaller.of[Int](`application/json`) {
(value, ct, ctx) => ctx.marshalTo(HttpEntity(ct, s"{ value: $value }"))

}
Post("/int", 42) === HttpRequest(method = POST, uri = "/int",
entity = HttpEntity(`application/json`, "{ value: 42 }"))

// add one or more headers by chaining in the `addHeader` modifier

5.5. spray-httpx 45

http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://github.com/spray/spray/tree/release/1.1/spray-httpx/src/main/scala/spray/httpx/encoding
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4813885
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/RequestBuilding.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Patch("/abc", "content") ~> addHeader("X-Yeah", "Naah") === HttpRequest(
method = PATCH,
uri = "/abc",
entity = "content",
headers = List(RawHeader("X-Yeah", "Naah"))

)

5.5.7 Response Transformation

The counterpart to Request Building is the ResponseTransformation trait, which is especially useful on the client-side
when you want to transform an incoming HTTP response in a number of loosely coupled steps into some kind of
higher-level result type (see also spray-client).

Just like with RequestBuilding the ResponseTransformation trait gives you the ~> operator, which allows
you to “append” a transformation function onto an existing function producing an HttpResponse. Thereby it
doesn’t matter whether the result is a plain response or a response wrapped in a Future.

For example, if you have a function:

import scala.concurrent.ExecutionContext.Implicits.global // for futures

val sendReceive: HttpRequest => Future[HttpResponse] = // ...

and a “response transformer”:

val removeCookieHeaders: HttpResponse => HttpResponse =
r => r.withHeaders(r.headers.filter(_.isNot("set-cookie")))

you can use the ~> operator to combine the two:

import spray.httpx.ResponseTransformation._

val pipeline: HttpRequest => Future[HttpResponse] =
sendReceive ~> removeCookieHeaders

More generally the ~> operator combines functions in the following ways:

X Y X ~> Y
A => B B => C A => C
A => Future[B] B => C A => Future[C]
A => Future[B] B => Future[C] A => Future[C]

Predefined Response Transformers

decode(decoder: Decoder): HttpResponse HttpResponse Decodes a response using the given Decoder (Gzip or
Deflate).

unmarshal[T: Unmarshaller]: HttpResponse T Unmarshalls the response to a custom type using the in-scope
Unmarshaller[T].

logResponse(...): HttpResponse HttpResponse Doesn’t actually change the response but simply logs it.

5.5.8 spray-json Support

The SprayJsonSupport trait provides a Marshaller and Unmarshaller for every type T that an implicit
spray.json.RootJsonReader and/or spray.json.RootJsonWriter (respectively) is available for.

46 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/ResponseTransformation.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/SprayJsonSupport.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Just mix in spray.httpx.SprayJsonSupport or import spray.httpx.SprayJsonSupport._.

For example:

import spray.json.DefaultJsonProtocol
import spray.httpx.unmarshalling._
import spray.httpx.marshalling._
import spray.http._
import HttpCharsets._
import MediaTypes._

case class Person(name: String, firstName: String, age: Int)

object MyJsonProtocol extends DefaultJsonProtocol {
implicit val PersonFormat = jsonFormat3(Person)

}

import MyJsonProtocol._
import spray.httpx.SprayJsonSupport._
import spray.util._

val bob = Person("Bob", "Parr", 32)
val body = HttpEntity(
contentType = ContentType(`application/json`, `UTF-8`),
string =
"""|{

| "name": "Bob",
| "firstName": "Parr",
| "age": 32
|}""".stripMarginWithNewline("\n")

)

marshal(bob) === Right(body)
body.as[Person] === Right(bob)

If you bring an implicit spray.json.JsonPrinter into scope the marshaller will use it. Otherwise it uses the
default spray.json.PrettyPrinter.

Note: Since spray-httpx only comes with an optional dependency on spray-json you still have to add it to your project
yourself. Check the spray-json documentation for information on how to do this.

5.5.9 lift-json Support

In analogy to the spray-json Support spray-httpx also provides the LiftJsonSupport trait, which automatically provides
implicit Marshaller and Unmarshaller instances for all types if an implicit net.liftweb.json.Formats
instance is in scope.

When mixing in LiftJsonSupport you have to implement the abstract member:

implicit def liftJsonFormats: Formats

with your custom logic.

Note: Since spray-httpx only comes with an optional dependency on lift-json you still have to add it to your project
yourself. Check the lift-json documentation for information on how to do this.

5.5. spray-httpx 47

https://github.com/spray/spray-json
https://github.com/spray/spray-json
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/LiftJsonSupport.scala
https://github.com/lift/lift/tree/master/framework/lift-base/lift-json/
https://github.com/lift/lift/tree/master/framework/lift-base/lift-json/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.5.10 json4s Support

In analogy to the spray-json Support spray-httpx also provides the Json4sSupport and Json4sJacksonSupport traits,
which automatically provide implicit Marshaller and Unmarshaller instances for all types if an implicit
org.json4s.Formats instance is in scope.

When mixing in either one of the two traits you have to implement the abstract member:

implicit def json4sFormats: Formats

with your custom logic. See the json4s documentation for more information on how to do this.

Note: Since spray-httpx only comes with an optional dependency on json4s-native and json4s-jackson you still have
to add either one of them to your project yourself. Check the json4s documentation for information on how to do this.

5.5.11 Twirl Support

Twirl complements spray with templating support.

The TwirlSupport trait provides the tiny glue layer required for being able to use twirl templates directly in spray-
routing routes and request building.

Simply mix in the TwirlSupport trait or import spray.httpx.TwirlSupport._.

Note: Since spray-httpx only comes with an optional dependency on twirl you still have to add it to your project
yourself. Check the twirl documentation for information on how to do this.

Side Note

This site, for example, makes use of twirl-templates and TwirlSupport for serving all of its pages.

5.6 spray-io

Up to release 1.0/1.1-M7 the spray-io module provided a low-level network I/O layer for directly connecting Akka
actors to asynchronous Java NIO sockets. Since then the spray and Akka teams have joined forces to build upon the
work in spray and come up with an extended and improved implementation, which lives directly in Akka as of Akka
2.2.

Over time more and more things that were previously provided by spray-io (e.g. the pipelining infrastructure and the
SSL/TLS support) have found their way, in an improved form, from the spray codebase into the Akka codebase, so
that spray’s own IO module will cease to exist in the near future.

For spray 1.0 and 1.1 the spray-io module contains a direct back-port of the new Akka-I/O infrastructure from Akka
2.2 to Akka 2.0 and Akka 2.1 (respectively). This means that users of Akka 2.0 and Akka 2.1 can enjoy the benefits
of the new I/O layer even without upgrading by simply including spray-io as a dependency.

All documentation for the new I/O layer can be found in the docs to Akka 2.2, namely:

• Introduction

• I/O Layer Design

48 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/Json4sSupport.scala
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/Json4sJacksonSupport.scala
http://json4s.org/#serialization
https://github.com/json4s/json4s/tree/master/native
https://github.com/json4s/json4s/tree/master/jackson
http://www.json4s.org
https://github.com/spray/twirl
https://github.com/spray/spray/blob/master/spray-httpx/src/main/scala/spray/httpx/TwirlSupport.scala
https://github.com/spray/twirl
https://github.com/spray/twirl
https://github.com/spray/spray/tree/release/1.1/site/src/main/twirl
https://groups.google.com/d/msg/spray-user/9mVRCDdWjn0/kd4CsXowQT8J
http://doc.akka.io/docs/akka/2.2.0-RC1/scala.html
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html
http://doc.akka.io/docs/akka/2.2.0-RC1/dev/io-layer.html#io-layer


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• TCP Support

• UDP Support

• Pipeline Infrastructure

5.6.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-io only depends on spray-util and akka-actor (with
‘provided’ scope, i.e. you need to pull it in yourself).

5.6.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-io into your classpath. Just as in Akka 2.2
all the (backported) components of the new I/O layer live in the akka.actor.io package.

5.7 spray-routing

The spray-routing module provides a high-level, very flexible routing DSL for elegantly defining RESTful web ser-
vices. Normally you would use it either on top of a spray-can HTTP Server or inside of a servlet container together
with spray-servlet.

5.7.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-routing depends on

• spray-http

• spray-httpx

• spray-util

• spray-io (optionally, required for SimpleRoutingApp)

• spray-can (optionally, required for SimpleRoutingApp)

• spray-caching (optionally, required for CachingDirectives and CachedUserPassAuthenticator)

• shapeless (1.2.x)

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

5.7.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-can into your classpath.

5.7.3 Configuration

Just like Akka spray-routing relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf, in which you override Akka and/or spray settings according to your needs.

5.7. spray-routing 49

http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-tcp.html
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-udp.html
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-codec.html
https://github.com/milessabin/shapeless
https://github.com/typesafehub/config


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-routing module:

#######################################
# spray-routing Reference Config File #
#######################################

# This is the reference config file that contains all the default settings.
# Make your edits/overrides in your application.conf.

spray.routing {

# Enables/disables the returning of more detailed error messages to the
# client in the error response
# Should be disabled for browser-facing APIs due to the risk of XSS attacks
# and (probably) enabled for internal or non-browser APIs
# (Note that spray will always produce log messages containing the full error details)
verbose-error-messages = off

# the minimal file size triggering file content streaming
# set to zero to disable automatic file-chunking in the FileAndResourceDirectives
file-chunking-threshold-size = 128k

# the size of an individual chunk when streaming file content
file-chunking-chunk-size = 128k

# Enables/disables ETag and `If-Modified-Since` support for FileAndResourceDirectives
file-get-conditional = on

# Enables/disables the rendering of the "rendered by" footer in directory listings
render-vanity-footer = yes

# a config section holding plain-text user/password entries
# for the default FromConfigUserPassAuthenticator
users {
# bob = secret

}

# the maximum size between two requested ranges.
# Ranges with less space in between will be coalesced.
range-coalescing-threshold = 80

# the maximum number of allowed ranges per request.
# Requests with more ranges will be rejected due to DOS suspicion.
range-count-limit = 16

}

5.7.4 Getting Started

Check out the Introduction / Getting Started chapter for information about the template project you can use to quickly
bootstrap your own spray-routing application.

50 Chapter 5. Documentation

http://doc.akka.io/docs/akka/2.0.4/general/configuration.html
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

SimpleRoutingApp

spray-routing also comes with the SimpleRoutingApp trait, which you can use as a basis for your first spray
endeavours. It reduces the boilerplate to a minimum and allows you to focus entirely on your route structure.

Just use this minimal example application as a starting point:

import spray.routing.SimpleRoutingApp

object Main extends App with SimpleRoutingApp {
implicit val system = ActorSystem("my-system")

startServer(interface = "localhost", port = 8080) {
path("hello") {

get {
complete {
<h1>Say hello to spray</h1>

}
}

}
}

}

This very concise way of bootstrapping a spray-routing application works nicely as long as you don’t have any special
requirements with regard to the actor which is running your route structure. Once you need more control over it, e.g.
because you want to be able to use it as the receiver (or sender) of custom messages, you’ll have to fall back to creating
your service actor “manually”. The Complete Examples demonstrate how to do that.

5.7.5 Key Concepts

We think that understanding the concepts presented in this chapter are crucial to being able to use spray-routing
effectively:

Big Picture

The spray-can HTTP Server and the spray-servlet connector servlet both provide an actor-level interface that allows
your application to respond to incoming HTTP requests by simply replying with an HttpResponse:

import spray.http._
import HttpMethods._

class MyHttpService extends Actor {
def receive = {
case HttpRequest(GET, Uri.Path("/ping"), _, _, _) =>

sender ! HttpResponse(entity = "PONG")
}

}

While it’d be perfectly possible to define a complete REST API service purely by pattern-matching against the in-
coming HttpRequest (maybe with the help of a few extractors in the way of Unfiltered) this approach becomes
somewhat unwieldy for larger services due to the amount of syntax “ceremony” required. Also, it doesn’t help in
keeping your service definition as DRY as you might like.

As an alternative spray-routing provides a flexible DSL for expressing your service behavior as a structure of com-
posable elements (called Directives) in a concise and readable way. At the top-level, as the result of the runRoute
wrapper, the “route structure” produces an Actor.Receive partial function that can be directly supplied to your
service actor. The service definition from above for example, written using the routing DSL, would look like this:

5.7. spray-routing 51

http://unfiltered.databinder.net/
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

import spray.routing._

class MyHttpService extends HttpServiceActor {
def receive = runRoute {
path("ping") {

get {
complete("PONG")

}
}

}
}

This very short example is certainly not the best for illustrating the savings in “ceremony” and improvements in
conciseness and readability that spray-routing promises. The Longer Example might do a better job in this regard.

For learning how to work with the spray-routing DSL you should first understand the concept of Routes.

The HttpService

spray-routing makes all relevant parts of the routing DSL available through the HttpService trait, which you can mix
into your service actor or route test. The HttpService trait defines only one abstract member:

def actorRefFactory: ActorRefFactory

which connects the routing DSL to your actor hierarchy. In order to have access to all HttpService members in
your service actor you can either mix in the HttpService trait and add this line to your actor class:

def actorRefFactory = context

or, alternatively, derive your service actor from HttpServiceActor class, which already defines the connecting
def actorRefFactory = context for you.

The runRoute Wrapper

Apart from all the predefined directives the HttpService provides one important thing, the runRoute wrapper.
This method connects your route structure to the enclosing actor by constructing an Actor.Receive partial function
that you can directly use as the “behavior” function of your actor:

import spray.routing._

class MyHttpService extends HttpServiceActor {
def receive = runRoute {
path("ping") {

get {
complete("PONG")

}
}

}
}

Routes

“Routes” are a central concept in spray-routing since all structures you build with the routing DSL are subtypes of
type Route. In spray-routing a route is defined like this:

52 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/HttpService.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

type Route = RequestContext => Unit

It’s a simple alias for a function taking a RequestContext as parameter.

Contrary to what you might initially expect a route does not return anything. Rather, all response processing (i.e.
everything that needs to be done after the route itself has handled a request) is performed in “continuation-style” via
the responder of the RequestContext. If you don’t know what this means, don’t worry. It’ll become clear
soon. The key point is that this design has the advantage of being completely non-blocking as well as actor-friendly
since, this way, it’s possible to simply send off a RequestContext to another actor in a “fire-and-forget” manner,
without having to worry about results handling.

Generally when a route receives a request (or rather a RequestContext for it) it can do one of three things:

• Complete the request by calling requestContext.complete(...)

• Reject the request by calling requestContext.reject(...)

• Ignore the request (i.e. neither complete nor reject it)

The first case is pretty clear, by calling complete a given response is sent to the client as reaction to the request.
In the second case “reject” means that the route does not want to handle the request. You’ll see further down in the
section about route composition what this is good for. The third case is usually an error. If a route does not do anything
with the request it will simply not be acted upon. This means that the client will not receive a response until the request
times out, at which point a 500 Internal Server Error response will be generated. Therefore your routes
should usually end up either completing or rejecting the request.

Constructing Routes

Since routes are ordinary functions RequestContext => Unit, the simplest route is:

ctx => ctx.complete("Response")

or shorter:

_.complete("Response")

or even shorter (using the complete directive):

complete("Response")

All these are different ways of defining the same thing, namely a Route that simply completes all requests with a
static response.

Even though you could write all your application logic as one monolithic function that inspects the
RequestContext and completes it depending on its properties this type of design would be hard to read, main-
tain and reuse. Therefore spray-routing allows you to construct more complex routes from simpler ones through
composition.

Composing Routes

There are three basic operations we need for building more complex routes from simpler ones:

• Route transformation, which delegates processing to another, “inner” route but in the process changes some
properties of either the incoming request, the outgoing response or both

• Route filtering, which only lets requests satisfying a given filter condition pass and rejects all others

• Route chaining, which tries a second route if a given first one was rejected

5.7. spray-routing 53



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The last point is achieved with the simple operator ~, which is available to all routes via a “pimp”, i.e. an implicit
extension. The first two points are provided by so-called Directives, of which a large number is already predefined
by spray-routing and which you can also easily create yourself. Directives deliver most of spray-routings power and
flexibility.

The Routing Tree

Essentially, when you combine directives and custom routes via nesting and the ~ operator, you build a routing
structure that forms a tree. When a request comes in it is injected into this tree at the root and flows down through all
the branches in a depth-first manner until either some node completes it or it is fully rejected.

Consider this schematic example:

val route =
a {
b {

c {
... // route 1

} ~
d {

... // route 2
} ~
... // route 3

} ~
e {

... // route 4
}

}

Here five directives form a routing tree.

• Route 1 will only be reached if directives a, b and c all let the request pass through.

• Route 2 will run if a and b pass, c rejects and d passes.

• Route 3 will run if a and b pass, but c and d reject.

Route 3 can therefore be seen as a “catch-all” route that only kicks in, if routes chained into preceding positions reject.
This mechanism can make complex filtering logic quite easy to implement: simply put the most specific cases up front
and the most general cases in the back.

Directives

“Directives” are small building blocks of which you can construct arbitrarily complex route structures. Here is a simple
example of a route built from directives:

import spray.routing._
import Directives._

val route: Route =
path("order" / IntNumber) { id =>
get {

complete {
"Received GET request for order " + id

}
} ~
put {

complete {

54 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

"Received PUT request for order " + id
}

}
}

The general anatomy of a directive is as follows:

name(arguments) { extractions =>
... // inner Route

}

It has a name, zero or more arguments and optionally an inner Route. Additionally directives can “extract” a number of
values and make them available to their inner routes as function arguments. When seen “from the outside” a directive
with its inner Route form an expression of type Route (see the Routes chapter for more details).

What Directives do

A directive does one or more of the following:

• Transform the incoming RequestContext before passing it on to its inner Route

• Filter the RequestContext according to some logic, i.e. only pass on certain requests and reject all others

• Extract values from the RequestContext and make them available to its inner Route as “extractions”

• Complete the request

The first point deserves some more discussion. A RequestContext is the central object that is passed on through
a route structure and, potentially, in between actors. It’s immutable but light-weight and can therefore be copied
quickly. When a directive receives a RequestContext instance from the outside it can decide to pass this instance
on unchanged to its inner Route or it can create a copy of the RequestContext instance, with one or more changes,
and pass on this copy to its inner Route. Typically this is good for two things:

• Transforming the HttpRequest instance

• “Hooking in” another response transformation function into the responder chain.

The Responder Chain

For understanding the “responder chain” it is helpful to look at what happens when the complete method of a
RequestContext instance is called in the inner-most route of a route structure.

Consider the following hypothetical route structure of three nested directives around a simple route:

foo {
bar {
baz {

ctx => ctx.complete("Hello")
}

}
}

Assume that foo and baz “hook in” response transformation logic whereas bar leaves the responder of the
RequestContext it receives unchanged before passing it on to its inner Route. This is what happens when the
complete("Hello") is called:

1. The complete method creates an HttpResponse an sends it to responder of the RequestContext.

5.7. spray-routing 55



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

2. The response transformation logic supplied by the baz directive runs and sends its result to the responder of the
RequestContext the baz directive received.

3. The response transformation logic supplied by the foo directive runs and sends its result to the responder of the
RequestContext the foo directive received.

4. The responder of the original RequestContext, which is the sender ActorRef of the HttpRequest,
receives the response and sends it out to the client.

As you can see all response handling logic forms a logic chain that directives can choose to “hook into”.

Composing Directives

As you have seen from the examples presented so far the “normal” way of composing directives is nesting. Let’s take
another look at the example from above:

val route: Route =
path("order" / IntNumber) { id =>
get {

complete {
"Received GET request for order " + id

}
} ~
put {

complete {
"Received PUT request for order " + id

}
}

}

Here the get and put directives are chained together with the ~ operator to form a higher-level route that serves as
the inner Route of the path directive. To make this structure more explicit you could also write the whole thing like
this:

def innerRoute(id: Int): Route =
get {
complete {

"Received GET request for order " + id
}

} ~
put {
complete {

"Received PUT request for order " + id
}

}

val route: Route = path("order" / IntNumber) { id => innerRoute(id) }

What you can’t see from this snippet is that directives are not implemented as simple methods but rather as stand-alone
objects of type Directive. This gives you more flexibility when composing directives. For example you can also
use the | operator on directives. Here is yet another way to write the example:

val route =
path("order" / IntNumber) { id =>
(get | put) { ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}
}

56 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

If you have a larger route structure where the (get | put) snippet appears several times you could also factor it
out like this:

val getOrPut = get | put
val route =

path("order" / IntNumber) { id =>
getOrPut { ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}
}

As an alternative to nesting you can also use the & operator:

val getOrPut = get | put
val route =

(path("order" / IntNumber) & getOrPut) { id => ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}

And once again, you can factor things out if you want:

val orderGetOrPut = path("order" / IntNumber) & (get | put)
val route =
orderGetOrPut { id => ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}

This type of combining directives with the | and & operators as well as “saving” more complex directive configurations
as a val works across the board, with all directives taking inner routes.

There is one more “ugly” thing remaining in our snippet: we have to fall back to the lowest-level route definition,
directly manipulating the RequestContext, in order to get to the request method. It’d be nicer if we could somehow
“extract” the method name in a special directive, so that we can express our inner-most route with a simple complete.
As it turns out this is easy with the extract directive:

val orderGetOrPut = path("order" / IntNumber) & (get | put)
val requestMethod = extract(_.request.method)
val route =
orderGetOrPut { id =>
requestMethod { m =>

complete("Received " + m + " request for order " + id)
}

}

Or differently:

val orderGetOrPut = path("order" / IntNumber) & (get | put)
val requestMethod = extract(_.request.method)
val route =
(orderGetOrPut & requestMethod) { (id, m) =>
complete("Received " + m + " request for order " + id)

}

Now, pushing the “factoring out” of directive configurations to its extreme, we end up with this:

val orderGetOrPutMethod =
path("order" / IntNumber) & (get | put) & extract(_.request.method)

val route =
orderGetOrPutMethod { (id, m) =>

5.7. spray-routing 57



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

complete("Received " + m + " request for order " + id)
}

Note that going this far with “compressing” several directives into a single one probably doesn’t result in the most
readable and therefore maintainable routing code. It might even be that the very first of this series of examples is in
fact the most readable one.

Still, the purpose of the exercise presented here is to show you how flexible directives can be and how you can use
their power to define your web service behavior at the level of abstraction that is right for your application.

Type Safety

When you combine directives with the | and & operators spray-routing makes sure that all extractions work as expected
and logical constraints are enforced at compile-time.

For example you cannot | a directive producing an extraction with one that doesn’t:

val route = path("order" / IntNumber) | get // doesn't compile

Also the number of extractions and their types have to match up:

val route = path("order" / IntNumber) | path("order" / DoubleNumber) // doesn't compile
val route = path("order" / IntNumber) | parameter('order.as[Int]) // ok

When you combine directives producing extractions with the & operator all extractions will be properly gathered up:

val order = path("order" / IntNumber) & parameters('oem, 'expired ?)
val route =
order { (orderId, oem, expired) =>
...

}

Directives offer a great way of constructing your web service logic from small building blocks in a plug and play
fashion while maintaining DRYness and full type-safety. If the large range of Predefined Directives (alphabetically)
does not fully satisfy your needs you can also very easily create Custom Directives.

Rejections

In the chapter about constructing Routes the ~ operator was introduced, which connects two routes in a way that allows
a second route to get a go at a request if the first route “rejected” it. The concept of “rejections” is used by spray-
routing for maintaining a more functional overall architecture and in order to be able to properly handle all kinds of
error scenarios.

When a filtering directive, like the get directive, cannot let the request pass through to its inner Route because the filter
condition is not satisfied (e.g. because the incoming request is not a GET request) the directive doesn’t immediately
complete the request with an error response. Doing so would make it impossible for other routes chained in after the
failing filter to get a chance to handle the request. Rather, failing filters “reject” the request in the same way as by
explicitly calling requestContext.reject(...).

After having been rejected by a route the request will continue to flow through the routing structure and possibly find
another route that can complete it. If there are more rejections all of them will be picked up and collected.

If the request cannot be completed by (a branch of) the route structure an enclosing handleRejections directive can be
used to convert a set of rejections into an HttpResponse (which, in most cases, will be an error response). The
runRoute Wrapper defined by the The HttpService trait internally wraps its argument route with the handleRejections
directive in order to “catch” and handle any rejection.

58 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Predefined Rejections

A rejection encapsulates a specific reason why a Route was not able to handle a request. It is modeled as an object
of type Rejection. spray-routing comes with a set of predefined rejections, which are used by various predefined
directives.

Rejections are gathered up over the course of a Route evaluation and finally converted to HttpResponse replies by
the handleRejections directive if there was no way for the request to be completed.

RejectionHandler

The handleRejections directive delegates the actual job of converting a list of rejections to its argument, a Rejection-
Handler, which is defined like this:

trait RejectionHandler extends PartialFunction[List[Rejection], Route]

Since a RejectionHandler is a partial function it can choose, which rejections it would like to handle
and which not. Unhandled rejections will simply continue to flow through the route structure. The top-most
RejectionHandler applied by The runRoute Wrapper will handle all rejections that reach it.

So, if you’d like to customize the way certain rejections are handled simply bring a custom RejectionHandler
into implicit scope of The runRoute Wrapper or pass it to an explicit handleRejections directive that you have put
somewhere into your route structure.

Here is an example:

import spray.routing._
import spray.http._
import StatusCodes._
import Directives._

implicit val myRejectionHandler = RejectionHandler {
case MissingCookieRejection(cookieName) :: _ =>
complete(BadRequest, "No cookies, no service!!!")

}

class MyService extends HttpServiceActor {
def receive = runRoute {
`<my-route-definition>`

}
}

Rejection Cancellation

As you can see from its definition above the RejectionHandler handles not single rejections but a whole list of
them. This is because some route structure produce several “reasons” why a request could not be handled.

Take this route structure for example:

import spray.httpx.encoding._

val route =
path("order") {
get {

complete("Received GET")
} ~

5.7. spray-routing 59

https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/Rejection.scala
https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/RejectionHandler.scala
https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/RejectionHandler.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

post {
decodeRequest(Gzip) {

complete("Received POST")
}

}
}

For uncompressed POST requests this route structure could yield two rejections:

• a MethodRejection produced by the get directive (which rejected because the request is not a GET request)

• an UnsupportedRequestEncodingRejection produced by the decodeRequest directive (which only
accepts gzip-compressed requests)

In reality the route even generates one more rejection, a TransformationRejection produced by the post
directive. It “cancels” all other potentially existing MethodRejections, since they are invalid after the post direc-
tive allowed the request to pass (after all, the route structure can deal with POST requests). These types of rejec-
tion cancellations are resolved before a RejectionHandler sees the rejection list. So, for the example above
the RejectionHandler will be presented with only a single-element rejection list, containing nothing but the
UnsupportedRequestEncodingRejection.

Empty Rejections

Since rejections are passed around in lists you might ask yourself what the semantics of an empty rejection list are.
In fact, empty rejection lists have well defined semantics. They signal that a request was not handled because the
respective resource could not be found. spray-routing reserves the special status of “empty rejection” to this most
common failure a service is likely to produce.

So, for example, if the path directive rejects a request, it does so with an empty rejection list. The host directive
behaves in the same way.

Exception Handling

Exceptions thrown during route execution bubble up through the route structure to the next enclosing handleExceptions
directive, The runRoute Wrapper or the onFailure callback of a future created by detach.

Similarly to the way that Rejections are handled the handleExceptions directive delegates the actual job of converting
a list of rejections to its argument, an ExceptionHandler, which is defined like this:

trait ExceptionHandler extends PartialFunction[Throwable, Route]

The runRoute Wrapper defined in The HttpService does the same but gets its ExceptionHandler instance implic-
itly.

Since an ExceptionHandler is a partial function it can choose, which exceptions it would like to handle
and which not. Unhandled exceptions will simply continue to bubble up in the route structure. The top-most
ExceptionHandler applied by The runRoute Wrapper will handle all exceptions that reach it.

So, if you’d like to customize the way certain exceptions are handled simply bring a custom ExceptionHandler
into implicit scope of The runRoute Wrapper or pass it to an explicit handleExceptions directive that you have put
somewhere into your route structure.

Here is an example:

import spray.util.LoggingContext
import spray.http.StatusCodes._
import spray.routing._

60 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/ExceptionHandler.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

implicit def myExceptionHandler(implicit log: LoggingContext) =
ExceptionHandler {
case e: ArithmeticException =>

requestUri { uri =>
log.warning("Request to {} could not be handled normally", uri)
complete(InternalServerError, "Bad numbers, bad result!!!")

}
}

class MyService extends HttpServiceActor {
def receive = runRoute {
`<my-route-definition>`

}
}

Timeout Handling

spray-routing itself does not perform any timeout checking, it relies on the underlying spray-can or spray-servlet mod-
ule to watch for request timeouts. Both, the spray-can HTTP Server and spray-servlet, define a timeout-handler
config setting, which allows you to specify the path of the actor to send spray.http.Timedout messages to
whenever a request timeout occurs. By default all Timedout messages go to same actor that also handles “regular”
request, i.e. your service actor.

Timedout is a simple wrapper around HttpRequest or ChunkedRequestStart instances:

case class Timedout(request: HttpRequestPart with HttpMessageStart)

If a Timedout messages hits your service actor runRoute unpacks it and feeds the wrapped request, i.e. the one that
timed out, to the timeoutRoute defined by the the HttpService. The default implementation looks like this:

def timeoutRoute: Route = complete(
InternalServerError,
"The server was not able to produce a timely response to your request.")

If you’d like to customize how your service reacts to request timeouts simply override the timeoutRoute method.

Alternatively you can also “catch” Timedout message before they are handled by runRoute and handle them in any
way you want. Here is an example of what this might look like:

import spray.http._
import spray.routing._

class MyService extends HttpServiceActor {
def receive = handleTimeouts orElse runRoute(myRoute)

def myRoute: Route = `<my-route-definition>`

def handleTimeouts: Receive = {
case Timedout(x: HttpRequest) =>
sender ! HttpResponse(StatusCodes.InternalServerError, "Too late")

}
}

5.7.6 Advanced Topics

Event though the following topics are considered “advanced” usage of spray-routing they are not necessarily hard to
understand. We simply assume that many users will be able to use spray-routing effectively without having to fully

5.7. spray-routing 61



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

understand the topics in this chapter.

Understanding the DSL Structure

spray-routing’s rather compact route building DSL with its extensive use of function literals can initially appear tricky,
especially for users without a lot of Scala experience, so in this chapter we are explaining the mechanics in some more
detail.

Assume you have the following route:

val route: Route = complete("yeah")

This is equivalent to:

val route: Route = _.complete("yeah")

which is itself the same as:

val route: Route = { ctx => ctx.complete("yeah") }

which is a function literal. The function defined by the literal is created at the time the val statement is reached but
the code inside of the function is not executed until an actual request is injected into the route structure. This is all
probably quite clear.

Now let’s look at this slightly more complex structure:

val route: Route =
get {
complete("yeah")

}

This is equivalent to:

val route: Route = {
val inner = { ctx => ctx.complete("yeah") }
get.apply(inner)

}

All that the complete directive is doing is creating a function instance, which is then passed to the apply method of the
object named “get directive”, which wraps its argument route (the inner route of the get directive) with some filter
logic and produces the final route.

Now let’s look at this code:

val route: Route = get {
println("MARK")
complete("yeah")

}

This is equivalent to:

val route: Route = {
val inner = {
println("MARK")
{ ctx => ctx.complete("yeah") }

}
get.apply(inner)

}

62 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

As you can see from this different representation of the same code the println statement is executed when the route
val is created, not when a request comes in and the route is executed! In order to execute the println at request
processing time it must be inside of the leaf-level complete directive:

val route: Route = get {
complete {
println("MARK")
"yeah"

}
}

The mistake of putting custom logic inside of the route structure, but outside of a leaf-level route, and expecting it to
be executed at request-handling time, is probably the most frequent error seen by new spray users.

Understanding Extractions

In the examples above there are essentially two “areas” of code that are executed at different times:

• code that runs at route construction time, so usually only once

• code that runs at request-handling time, so for every request anew

If a route structure contains extractions there is one more “area” coming into play. Let’s take a look at this example:

val route: Route = {
println("MARK 1")
get {
println("MARK 2")
path("abc" / Segment) { x =>
println("MARK 3") //
complete { // code "inside"

println("MARK 4") // of the
"yeah" // extraction

} //
}

}
}

Here we have put logging statements at four different places in our route structure. Let’s see when exactly they will
be executed.

MARK 1 and MARK 2 From the analysis in the section above you should be able to see that there is no real differ-
ence between the “MARK 1” and “MARK 2” statements. They are both executed exactly once, when the route
is built.

MARK 3 This statement lies within a function literal of an extraction, but outside of the leaf-level route. It is executed
when the request is handled, so essentially shortly before the “MARK 4” statement.

MARK 4 This statement lives inside of the leaf-level route. As such it is executed anew for every request hitting its
route.

Why is the “MARK 3” statement executed for every request, even though it doesn’t live at the leaf level? Because it
lives “underneath an extraction”. All branches of the route structure that lie inside of a function literal for an extraction
can only be created when the extracted values have been determined. Since the value of the Segment in the example
above can only be known after a request has come in and its path has been parsed the branch of the route structure
“inside” of the extraction can only be built at request-handling time.

So essentially the sequence of events in the example above is as follows:

5.7. spray-routing 63



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

1. When the val route = ... declaration is executed the outer route structure is built. The “outer route
structure” consists of the get directive and its direct children, in this case only the path directive.

2. When a GET request with a matching URI comes in it flows through the outer route structure up until the point
the path directive has extracted the value of the Segment placeholder.

3. The extraction function literal is executed, with the extracted Segment value as argument. This function creates
the underlying route structure inside of the extraction.

4. After the inner route structure has been created the request is injected into it. So the inner route structure
underneath an extraction is being “executed” right after its creation.

Since the route structure inside of an extraction is fully dynamic it might look completely different depending on the
value that has been extracted. In order to keep your route structure readable (and thus maintainable) you probably
shouldn’t go too crazy with regard to dynamically creating complex route structures depending on specific extraction
values though. However, understanding why it’d be possible is helpful in getting the most out of the spray-routing
DSL.

Performance Tuning

With the understanding of the above sections it should now be possible to discover optimization potential in your route
structures for the (rare!) cases, where route execution performance really turns out to be a significant factor in your
application.

Let’s compare two route structures that are almost equivalent with regard to how they respond to requests:

val routeA =
path("abc" / Segment) { x =>
get {

complete(responseFor(x))
}

}

val routeB =
get {
path("abc" / Segment) { x =>

complete(responseFor(x))
}

}

The only difference between routeA and routeB is the order in which the get and the path directive are nested.
routeB will be a tiny amount faster in responding to requests, because the dynamic part of the route structure, i.e.
the one that is rebuilt anew for every request, is smaller.

A general recommendation could therefore be to “pull up” directives without extractions as far as possible and only
start extracting values at the lower levels of your routing tree. However, in the grand majority of applications we’d
expect the benefits of a cleanly and logically laid out structure to far outweigh potential performance improvements
through a more complex solution that goes out of its way to push down or even avoid extractions for a tiny, non-
perceivable bump in performance.

Case Class Extraction

The value extraction performed by Directives is a nice way of providing your route logic with interesting request
properties, all with proper type-safety and error handling. However, in some case you might want even more. Consider
this example:

64 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

case class Color(red: Int, green: Int, blue: Int)

val route =
path("color") {
parameters('red.as[Int], 'green.as[Int], 'blue.as[Int]) { (red, green, blue) =>

val color = Color(red, green, blue)
doSomethingWith(color) // route working with the Color instance

}
}

Here a parameters directives is employed to extract three Int values, which are then used to construct an instance of
the Color case class. So far so good. However, if the model classes we’d like to work with have more than just a few
parameters the overhead introduced by capturing the arguments as extractions only to feed them into the model class
constructor directly afterwards can somewhat clutter up your route definitions.

If your model classes are case classes, as in our example, spray-routing supports an even shorter and more concise
syntax. You can also write the example above like this:

case class Color(red: Int, green: Int, blue: Int)

val route =
path("color") {
parameters('red.as[Int], 'green.as[Int], 'blue.as[Int]).as(Color) { color =>

doSomethingWith(color) // route working with the Color instance
}

}

You can postfix any directive with extractions with an as(...) call. By simply passing the companion object of
your model case class to the as modifier method the underlying directive is transformed into an equivalent one, which
extracts only one value of the type of your model class. Note that there is no reflection involved and your case class
does not have to implement any special interfaces. The only requirement is that the directive you attach the as call to
produces the right number of extractions, with the right types and in the right order.

If you’d like to construct a case class instance from extractions produced by several directives you can first join the
directives with the & operator before using the as call:

case class Color(name: String, red: Int, green: Int, blue: Int)

val route =
(path("color" / Segment) &
parameters('r.as[Int], 'g.as[Int], 'b.as[Int])).as(Color) { color =>
doSomethingWith(color) // route working with the Color instance

}

Here the Color class has gotten another member, name, which is supplied not as a parameter but as a path element.
By joining the path and parameters directives with & you create a directive extracting 4 values, which directly
fit the member list of the Color case class. Therefore you can use the as modifier to convert the directive into one
extracting only a single Color instance.

Generally, when you have routes that work with, say, more than 3 extractions it’s a good idea to introduce a case class
for these and resort to case class extraction. Especially since it supports another nice feature: validation.

Caution: There is one quirk to look out for when using case class extraction: If you create an explicit companion
object for your case class, no matter whether you actually add any members to it or not, the syntax presented above
will not (quite) work anymore. Instead of as(Color) you will then have to say as(Color.apply). This
behavior appears as if it’s not really intended, we will try to work with the Typesafe team to fix this.

5.7. spray-routing 65



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Case Class Validation

In many cases your web service needs to verify input parameters according to some logic before actually working with
them. E.g. in the example above the restriction might be that all color component values must be between 0 and 255.
You could get this done with a few validate directives but this would quickly become cumbersome and hard to read.

If you use case class extraction you can put the verification logic into the constructor of your case class, where it
should be:

case class Color(name: String, red: Int, green: Int, blue: Int) {
require(!name.isEmpty, "color name must not be empty")
require(0 <= red && red <= 255, "red color component must be between 0 and 255")
require(0 <= green && green <= 255, "green color component must be between 0 and 255")
require(0 <= blue && blue <= 255, "blue color component must be between 0 and 255")

}

If you write your validations like this spray-routings case class extraction logic will properly pick up all error messages
and generate a ValidationRejection if something goes wrong. By default, ValidationRejections are
converted into 400 Bad Request error response by the default RejectionHandler, if no subsequent route success-
fully handles the request.

Custom Directives

Part of spray-routings power comes from the ease with which it’s possible to define custom directives at differing
levels of abstraction. There are essentially three ways of creating custom directives:

1. By introducing new “labels” for configurations of existing directives

2. By transforming existing directives

3. By writing a directive “from scratch”

Configuration Labelling

The easiest way to create a custom directive is to simply assign a new name for a certain configuration of one or more
existing directives. In fact, most of spray-routings predefined directives can be considered named configurations of
more low-level directives.

The basic technique is explained in the chapter about Composing Directives, where, for example, a new directive
getOrPut is defined like this:

val getOrPut = get | put

Another example are the MethodDirectives, which are simply instances of a preconfigured method directive, such as:

val delete = method(DELETE)
val get = method(GET)
val head = method(HEAD)
val options = method(OPTIONS)
val patch = method(PATCH)
val post = method(POST)
val put = method(PUT)

The low-level directives that most often form the basis of higher-level “named configuration” directives are grouped
together in the BasicDirectives trait.

66 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/directives/MethodDirectives.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Transforming Directives

The second option for creating new directives is to transform an existing one using one of the “transformation meth-
ods”, which are defined on the Directive class, the base class of all “regular” directives.

Apart from the combinator operators (| and &) and the case-class extractor (as[T]) there are these transformations
defined on all Directive[L <: HList] instances:

• map / hmap

• flatMap / hflatMap

• require / hrequire

• recover / recoverPF

map / hmap The hmap modifier has this signature (somewhat simplified):

def hmap[R](f: L => R): Directive[R :: HNil]

It can be used to transform the HList of extractions into another HList. The number and/or types of the extractions
can be changed arbitrarily. If R <: HList then the result is Directive[R]. Here is a somewhat contrived
example:

import shapeless._
import spray.routing._
import Directives._

val twoIntParameters: Directive[Int :: Int :: HNil] =
parameters('a.as[Int], 'b.as[Int])

val myDirective: Directive1[String] =
twoIntParameters.hmap {
case a :: b :: HNil => (a + b).toString

}

// test `myDirective` using the testkit DSL
Get("/?a=2&b=5") ~> myDirective(x => complete(x)) ~> check {

responseAs[String] === "7"
}

If the Directive is a single-value Directive, i.e. one that extracts exactly one value, you can also use the simple map
modifier, which doesn’t take the directives HList as parameter but rather the single value itself.

One example of a predefined directive relying on map is the optionalHeaderValue directive.

flatMap / hflatMap With hmap or map you can transform the values a directive extracts, but you cannot change the
“extracting” nature of the directive. For example, if you have a directive extracting an Int you can use map to turn
it into a directive that extracts that Int and doubles it, but you cannot transform it into a directive, that doubles all
positive Int values and rejects all others.

In order to do the latter you need hflatMap or flatMap. The hflatMap modifier has this signature:

def hflatMap[R <: HList](f: L => Directive[R]): Directive[R]

The given function produces a new directive depending on the HList of extractions of the underlying one. As in the
case of map / hmap there is also a single-value variant called flatMap, which simplifies the operation for Directives
only extracting one single value.

5.7. spray-routing 67

https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/Directive.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Here is the (contrived) example from above, which doubles positive Int values and rejects all others:

import shapeless._
import spray.routing._
import Directives._

val intParameter: Directive1[Int] = parameter('a.as[Int])

val myDirective: Directive1[Int] =
intParameter.flatMap {
case a if a > 0 => provide(2 * a)
case _ => reject

}

// test `myDirective` using the testkit DSL
Get("/?a=21") ~> myDirective(i => complete(i.toString)) ~> check {

responseAs[String] === "42"
}
Get("/?a=-18") ~> myDirective(i => complete(i.toString)) ~> check {

handled must beFalse
}

A common pattern that relies on flatMap is to first extract a value from the RequestContext with the extract
directive and then flatMap with some kind of filtering logic. For example, this is the implementation of the method
directive:

/**
* Rejects all requests whose HTTP method does not match the given one.

*/
def method(httpMethod: HttpMethod): Directive0 =

extract(_.request.method).flatMap[HNil] {
case `httpMethod` pass
case _ reject(MethodRejection(httpMethod))

} & cancelAllRejections(ofType[MethodRejection])

The explicit type parameter [HNil] on the flatMap is needed in this case because the result of the flatMap
is directly concatenated with the cancelAllRejections directive, thereby preventing “outside-in” inference of the type
parameter value.

require / hrequire The require modifier transforms a single-extraction directive into a directive without extrac-
tions, which filters the requests according the a predicate function. All requests, for which the predicate is false are
rejected, all others pass unchanged.

The signature of require is this (slightly simplified):

def require[T](predicate: T => Boolean): Directive[HNil]

One example of a predefined directive relying on require is the first overload of the host directive.

You can only call require on single-extraction directives. The hrequire modifier is the more general variant,
which takes a predicate of type HList => Boolean. It can therefore also be used on directives with several
extractions.

recover / recoverPF The recover modifier allows you “catch” rejections produced by the underlying directive
and, instead of rejecting, produce an alternative directive with the same type(s) of extractions.

The signature of recover is this:

68 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

def recover(recovery: List[Rejection] => Directive[L]): Directive[L]

In many cases the very similar recoverPF modifier might be little bit easier to use since it doesn’t require the
handling of all rejections:

def recoverPF(recovery: PartialFunction[List[Rejection], Directive[L]]): Directive[L]

One example of a predefined directive relying recoverPF is the optionalHeaderValue directive.

Directives from Scratch

The third option for creating custom directives is to do it “from scratch”, by directly subclassing the Directive
class. The Directive is defined like this (leaving away operators and modifiers):

abstract class Directive[L <: HList] {
def happly(f: L => Route): Route

}

It only has one abstract member that you need to implement, the happly method, which creates the Route the
directives presents to the outside from its inner Route building function (taking the extractions as parameter).

Extractions are kept as a shapeless HList. Here are a few examples:

• A Directive[HNil] extracts nothing (like the get directive). Because this type is used quite frequently
spray-routing defines a type alias for it:

type Directive0 = Directive[HNil]

• A Directive[String :: HNil] extracts one String value (like the hostName directive). The type
alias for it is:

type Directive1[T] = Directive[T :: HNil]

• A Directive[Int :: String :: HNil] extracts an Int value and a String value (like a
parameters(’a.as[Int], ’b.as[String] directive).

Keeping extractions as HLists has a lot of advantages, mainly great flexibility while upholding full type safety and
“inferability”. However, the number of times where you’ll really have to fall back to defining a directive from scratch
should be very small. In fact, if you find yourself in a position where a “from scratch” directive is your only option,
we’d like to hear about it, so we can provide a higher-level “something” for other users.

Response Streaming

Apart from completing requests with simple HttpResponse instances spray-routing also supports asynchronous
response streaming. If you run spray-routing on top of the spray-can HTTP Server a response stream can be rendered
as an HTTP/1.1 chunked response or, if chunkless-streaming is enabled, as a single response, whose entity
body is sent in several parts, one by one, across the network.

When running spray-routing on top of spray-servlet the exact interpretation of the individual response chunks depends
on the servlet container implementation (see the spray-servlet docs for more info on this).

A streaming response is started by sending a ChunkedResponseStart message to the responder of the
RequestContext. Afterwards the responder is ready to receive a number of MessageChunk messages. A
streaming response is terminated with a ChunkedMessageEnd message.

In order to not flood the network with chunks that it might not be able to currently digest it’s always a good idea to not
send out another chunk before having received a “ACK” confirmation message from the underlying layer (see ACKed
Sends in the spray-can documentation).

5.7. spray-routing 69

https://github.com/milessabin/shapeless


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The Complete Examples both contain sample code, which shows how to send a streaming response that is “pulled” by
the network via send confirmation messages.

5.7.7 Predefined Directives (alphabetically)

Directive Description
alwaysCache Wraps its inner Route with caching support using a given cache instance, ignores request Cache-Control headers
anyParam Extracts a parameter either from a form field or from query parameters (in that order), rejects if no form field of query param of the given name can be found
anyParams Same as anyParam, except for several parameters at once
authenticate Tries to authenticate the user with a given authenticator and either extract a an object representing the user context or rejects
authorize Applies a given authorization check to the request and rejects if it doesn’t pass
autoChunk Converts non-rejected responses from its inner Route to chunked responses using a given chunk size
autoChunkFileBytes Converts non-rejected responses from its inner Route to chunked responses using a given chunk size, if the response entity contains HttpData.FileBytes
cache Wraps its inner Route with caching support using a given cache instance
cachingProhibited Rejects the request if it doesn’t contain a Cache-Control header with no-cache or max-age=0
cancelAllRejections Adds a TransformationRejection to rejections from its inner Route, which cancels other rejections according to a predicate function
cancelRejection Adds a TransformationRejection cancelling all rejections equal to a given one
clientIP Extracts the IP address of the client from either the X-Forwarded-For, Remote-Address or X-Real-IP request header
complete Completes the request with a given response, several overloads
compressResponse Compresses responses coming back from its inner Route using either Gzip or Deflate unless the request explicitly sets Accept-Encoding to identity.
compressResponseIfRequested Compresses responses coming back from its inner Route using either Gzip or Deflate, but only when the request explicitly accepts one of them.
conditional Depending on the given ETag and Last-Modified values responds with 304 Not Modified if the request comes with the respective conditional headers.
cookie Extracts an HttpCookie with a given name or rejects if no such cookie is present in the request
decodeRequest Decompresses incoming requests using a given Decoder
decompressRequest Decompresses incoming requests using either Gzip, Deflate, or NoEncoding
delete Rejects all non-DELETE requests
deleteCookie Adds a Set-Cookie header expiring the given cookie to all HttpResponse replies of its inner Route
detach Executes its inner Route in a Future
dynamic Rebuilds its inner Route for every request anew
dynamicIf Conditionally rebuilds its inner Route for every request anew
encodeResponse Compresses responses coming back from its inner Route using a given Encoder
entity Unmarshalls the requests entity according to a given definition, rejects in case of problems
extract Extracts a single value from the RequestContext using a function RequestContext => T
failWith Bubbles the given error up the response chain, where it is dealt with by the closest handleExceptions directive and its ExceptionHandler
formField Extracts the value of an HTTP form field, rejects if the request doesn’t come with a field matching the definition
formFields Same as formField, except for several fields at once
get Rejects all non-GET requests
getFromBrowseableDirectories Same as getFromBrowseableDirectory, but allows for serving the “union” of several directories as one single “virtual” one
getFromBrowseableDirectory Completes GET requests with the content of a file underneath a given directory, renders directory contents as browsable listings
getFromDirectory Completes GET requests with the content of a file underneath a given directory
getFromFile Completes GET requests with the content of a given file
getFromResource Completes GET requests with the content of a given resource
getFromResourceDirectory Same as getFromDirectory except that the file is not fetched from the file system but rather from a “resource directory”
handleExceptions Converts exceptions thrown during evaluation of its inner Route into HttpResponse replies using a given ExceptionHandler
handleRejections Converts rejections produced by its inner Route into HttpResponse replies using a given RejectionHandler
handleWith Completes the request using a given function. Uses the in-scope Unmarshaller and Marshaller for converting to and from the function
head Rejects all non-HEAD requests
headerValue Extracts an HTTP header value using a given function, rejects if no value can be extracted
headerValueByName Extracts an HTTP header value by selecting a header by name
headerValueByType Extracts an HTTP header value by selecting a header by type

Continued on next page

70 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Table 5.1 – continued from previous page
Directive Description
headerValuePF Same as headerValue, but with a PartialFunction
hextract Extracts an HList of values from the RequestContext using a function
host Rejects all requests with a hostname different from a given definition, can extract the hostname using a regex pattern
hostName Extracts the hostname part of the requests Host header value
hprovide Injects an HList of values into a directive, which provides them as extractions
jsonpWithParameter Wraps its inner Route with JSONP support
listDirectoryContents Completes GET requests with a unified listing of the contents of one or more given directories
logRequest Produces a log entry for every incoming request
logRequestResponse Produces a log entry for every response or rejection coming back from its inner route, allowing for coalescing with the corresponding request
logResponse Produces a log entry for every response or rejection coming back from its inner route
mapHttpResponse Transforms the HttpResponse coming back from its inner Route
mapHttpResponsePart More general than mapHttpResponse, transforms the HttpResponsePart coming back from its inner Route
mapHttpResponseEntity Transforms the entity of the HttpResponse coming back from its inner Route
mapHttpResponseHeaders Transforms the headers of the HttpResponse coming back from its inner Route
mapInnerRoute Transforms its inner Route with a Route => Route function
mapRejections Transforms all rejections coming back from its inner Route
mapRequest Transforms the incoming HttpRequest
mapRequestContext Transforms the RequestContext
mapRouteResponse Transforms all responses coming back from its inner Route with a Any => Any function
mapRouteResponsePF Same as mapRouteResponse, but with a PartialFunction
method Rejects if the request method does not match a given one
overrideMethodWithParameter Changes the HTTP method of the request to the value of the specified query string parameter
noop Does nothing, i.e. passes the RequestContext unchanged to its inner Route
onComplete “Unwraps” a Future[T] and runs its inner route after future completion with the future’s value as an extraction of type Try[T]
onFailure “Unwraps” a Future[T] and runs its inner route when the future has failed with the future’s failure exception as an extraction of type Throwable
onSuccess “Unwraps” a Future[T] and runs its inner route after future completion with the future’s value as an extraction of type T
optionalAuthenticate Tries to authenticate the user with a given authenticator and either extract a an object representing the user context, extract None, or rejects
optionalCookie Extracts an HttpCookie with a given name, if the cookie is not present in the request extracts None
optionalHeaderValue Extracts an optional HTTP header value using a given function
optionalHeaderValueByName Extracts an optional HTTP header value by selecting a header by name
optionalHeaderValueByType Extracts an optional HTTP header value by selecting a header by type
optionalHeaderValuePF Extracts an optional HTTP header value using a given partial function
options Rejects all non-OPTIONS requests
parameter Extracts the value of a request query parameter, rejects if the request doesn’t come with a parameter matching the definition
parameterMap Extracts the requests query parameters as a Map[String, String]
parameterMultiMap Extracts the requests query parameters as a Map[String, List[String]]
parameters Same as parameter, except for several parameters at once
parameterSeq Extracts the requests query parameters as a Seq[(String, String)]
pass Alias for noop
patch Rejects all non-PATCH requests
path Extracts zero+ values from the unmatchedPath of the RequestContext according to a given PathMatcher, rejects if no match
pathEnd Only passes on the request to its inner route if the request path has been matched completely, rejects otherwise
pathEndOrSingleSlash Only passes on the request to its inner route if the request path has been matched completely or only consists of exactly one remaining slash, rejects otherwise
pathPrefix Same as path, but also matches (and consumes) prefixes of the unmatched path (rather than only the complete unmatched path at once)
pathPrefixTest Like pathPrefix but without “consumption” of the matched path (prefix).
pathSingleSlash Only passes on the request to its inner route if the request path consists of exactly one remaining slash
pathSuffix Like as pathPrefix, but for suffixes rather than prefixed of the unmatched path
pathSuffixTest Like pathSuffix but without “consumption” of the matched path (suffix).
post Rejects all non-POST requests

Continued on next page

5.7. spray-routing 71



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Table 5.1 – continued from previous page
Directive Description
produce Uses the in-scope marshaller to extract a function that can be used for completing the request with an instance of a custom type
provide Injects a single value into a directive, which provides it as an extraction
put Rejects all non-PUT requests
rawPathPrefix Applies a given PathMatcher directly to the unmatched path of the RequestContext, i.e. without implicitly consuming a leading slash
rawPathPrefixTest Checks whether the unmatchedPath of the RequestContext has a prefix matched by a PathMatcher
redirect Completes the request with redirection response of the given type to a given URI
reject Rejects the request with a given set of rejections
rejectEmptyResponse Converts responses with an empty entity into a rejection
requestEncodedWith Rejects the request if its encoding doesn’t match a given one
requestEntityEmpty Rejects the request if its entity is not empty
requestEntityPresent Rejects the request if its entity is empty
requestInstance Extracts the complete request
requestUri Extracts the complete request URI
respondWithHeader Adds a given response header to all HttpResponse replies from its inner Route
respondWithHeaders Same as respondWithHeader, but for several headers at once
respondWithLastModifiedHeader Adds a Last-Modified header to all HttpResponse replies from its inner Route
respondWithMediaType Overrides the media-type of all HttpResponse replies from its inner Route, rejects if the media-type is not accepted by the client
respondWithSingletonHeader Adds a given response header to all HttpResponse replies from its inner Route, if a header with the same name is not yet present
respondWithSingletonHeaders Same as respondWithSingletonHeader, but for several headers at once
respondWithStatus Overrides the response status of all HttpResponse replies coming back from its inner Route
responseEncodingAccepted Rejects the request if the client doesn’t accept a given encoding for the response
rewriteUnmatchedPath Transforms the unmatchedPath of the RequestContext using a given function
routeRouteResponse Chains a partial function into the response chain, which, for certain responses from its inner route, produces another route that is to be applied instead
scheme Rejects a request if its Uri scheme does not match a given one
schemeName Extracts the request Uri scheme
setCookie Adds a Set-Cookie header to all HttpResponse replies of its inner Route
unmatchedPath Extracts the unmatched path from the RequestContext
validate Passes or rejects the request depending on evaluation of a given conditional expression
withRangeSupport Transforms the response from its inner route into a 206 Partial Content response if the client requested only part of the resource with a Range header.

5.7.8 Predefined Directives (by trait)

All predefined directives are organized into traits that form one part of the overarching Directives trait, which is
defined like this:

trait Directives extends RouteConcatenation
with AnyParamDirectives
with BasicDirectives
with CacheConditionDirectives
with ChunkingDirectives
with CookieDirectives
with DebuggingDirectives
with EncodingDirectives
with ExecutionDirectives
with FileAndResourceDirectives
with FormFieldDirectives
with FutureDirectives
with HeaderDirectives
with HostDirectives
with MarshallingDirectives
with MethodDirectives
with MiscDirectives

72 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

with ParameterDirectives
with PathDirectives
with RangeDirectives
with RespondWithDirectives
with RouteDirectives
with SchemeDirectives
with SecurityDirectives

object Directives extends Directives

Directives filtering or extracting from the request

MethodDirectives Filter and extract based on the request method.

HeaderDirectives Filter and extract based on request headers.

PathDirectives Filter and extract from the request URI path.

HostDirectives Filter and extract based on the target host.

ParameterDirectives, FormFieldDirectives, AnyParamDirectives Filter and extract based on query parameters, form
fields, or both.

EncodingDirectives Filter and decode compressed request content.

Marshalling Directives Extract the request entity.

SchemeDirectives Filter and extract based on the request scheme.

SecurityDirectives Handle authentication data from the request.

CookieDirectives Filter and extract cookies.

BasicDirectives and MiscDirectives Directives handling request properties.

Directives creating or transforming the response

CacheConditionDirectives Support for conditional requests (304 Not Modified responses).

ChunkingDirectives Automatically break a response into chunks.

CookieDirectives Set, modify, or delete cookies.

EncodingDirectives Compress responses.

FileAndResourceDirectives Deliver responses from files and resources.

RangeDirectives Support for range requests (206 Partial Content responses).

RespondWithDirectives Change response properties.

RouteDirectives Complete or reject a request with a response.

BasicDirectives and MiscDirectives Directives handling or transforming response properties.

List of predefined directives by trait

AnyParamDirectives

anyParam Alias for anyParams.

5.7. spray-routing 73



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Signature
def anyParam(apdm: AnyParamDefMagnet): apdm.Out

Description See anyParams.

anyParams The anyParams directive allows to extract values both from query parameters and form fields.

Signature
def anyParams(params: <ParamDef[T_i]>*): Directive[T_0 :: ... T_i ... :: HNil]
def anyParams(params: <ParamDef[T_0]> :: ... <ParamDef[T_i]> ... :: HNil): Directive[T_0 :: ... T_i ... :: HNil]

The signature shown is simplified and written in pseudo-syntax, the real signature uses magnets. 1 The type
<ParamDef> doesn’t really exist but consists of the syntactic variants as shown in the description and the exam-
ples of the parameters directive.

Description The directives combines the functionality from parameters and formFields in one directive. To be able
to unmarshal a parameter to a value of a specific type (e.g. with as[Int]) you need to fulfill the requirements as
explained both for parameters and formFields.

There’s a singular version, anyParam.

Example
val route =
anyParams('name, 'age.as[Int])((name, age) =>
complete(s"$name is $age years old")

)

// extracts query parameters
Get("/?name=Herman&age=168") ~> route ~> check {

responseAs[String] === "Herman is 168 years old"
}

// extracts form fields
Post("/", FormData(Seq("name" -> "Herman", "age" -> "168"))) ~> route ~> check {

responseAs[String] === "Herman is 168 years old"
}

BasicDirectives

Basic directives are building blocks for building Custom Directives. As such they usually aren’t used in a route directly
but rather in the definition of new directives.

Directives to provide values to inner routes These directives allow to provide the inner routes with extractions.
They can be distinguished on two axes: a) provide a constant value or extract a value from the RequestContext
b) provide a single value or an HList of values.

• extract

• hextract
1 See The Magnet Pattern for an explanation of magnet-based overloading.

74 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• provide

• hprovide

Directives transforming the request

• mapRequestContext

• mapRequest

Directives transforming the response These directives allow to hook into the response path and transform the
complete response or the parts of a response or the list of rejections:

• mapHttpResponse

• mapHttpResponseEntity

• mapHttpResponseHeaders

• mapHttpResponsePart

• mapRejections

Directives hooking into the responder chain These directives allow to hook into The Responder Chain. The first
two allow transforming the response message to a new message. The latter one allows to completely replace the
response message with the execution of a new route.

• mapRouteResponse

• mapRouteResponsePF

• routeRouteResponse

Directives changing the execution of the inner route

• mapInnerRoute

Directives alphabetically

extract Calculates a value from the request context and provides the value to the inner route.

Signature
def extract[T](f: RequestContext T): Directive1[T]

Description The extract directive is used as a building block for Custom Directives to extract data from the
RequestContext and provide it to the inner route. It is a special case for extracting one value of the more general
hextract directive that can be used to extract more than one value.

See Directives to provide values to inner routes for an overview of similar directives.

Example

5.7. spray-routing 75



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

val uriLength = extract(_.request.uri.toString.length)
val route =
uriLength { len =>
complete(s"The length of the request URI is $len")

}

Get("/abcdef") ~> route ~> check {
responseAs[String] === "The length of the request URI is 25"

}

hextract Calculates an HList of values from the request context and provides them to the inner route.

Signature
def hextract[L <: HList](f: RequestContext L): Directive[L]

Description The hextract directive is used as a building block for Custom Directives to extract data from the
RequestContext and provide it to the inner route. To extract just one value use the extract directive. To provide a
constant value independent of the RequestContext use the hprovide directive instead.

See Directives to provide values to inner routes for an overview of similar directives.

Example
import shapeless.HNil
val pathAndQuery = hextract { ctx =>
val uri = ctx.request.uri
uri.path :: uri.query :: HNil

}
val route =
pathAndQuery { (p, query) =>
complete(s"The path is $p and the query is $query")

}

Get("/abcdef?ghi=12") ~> route ~> check {
responseAs[String] === "The path is /abcdef and the query is ghi=12"

}

hprovide Provides an HList of values to the inner route.

Signature
def hprovide[L <: HList](values: L): Directive[L]

Description The hprovide directive is used as a building block for Custom Directives to provide data to the
inner route. To provide just one value use the provide directive. If you want to provide values calculated from the
RequestContext use the hextract directive instead.

See Directives to provide values to inner routes for an overview of similar directives.

Example

76 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

import shapeless.HNil
def provideStringAndLength(value: String) = hprovide(value :: value.length :: HNil)
val route =
provideStringAndLength("test") { (value, len) =>
complete(s"Value is $value and its length is $len")

}
Get("/") ~> route ~> check {

responseAs[String] === "Value is test and its length is 4"
}

mapHttpResponse Changes the response that was generated by the inner route.

Signature
def mapHttpResponse(f: HttpResponse HttpResponse): Directive0

Description The mapHttpResponse directive is used as a building block for Custom Directives to transform a
response that was generated by the inner route. This directive transforms only complete responses. Use mapHttpRe-
sponsePart, instead, to transform parts of chunked responses as well.

See Directives transforming the response for similar directives.

Example
def overwriteResultStatus(response: HttpResponse): HttpResponse =

response.copy(status = StatusCodes.BadGateway)
val route = mapHttpResponse(overwriteResultStatus)(complete("abc"))

Get("/abcdef?ghi=12") ~> route ~> check {
status === StatusCodes.BadGateway

}

mapHttpResponseEntity Changes the response entity that was generated by the inner route.

Signature
def mapHttpResponseEntity(f: HttpEntity HttpEntity): Directive0

Description The mapHttpResponseEntity directive is used as a building block for Custom Directives to trans-
form a response entity that was generated by the inner route.

See Directives transforming the response for similar directives.

Example
def prefixEntity(entity: HttpEntity): HttpEntity =

HttpEntity(HttpData("test") +: entity.data)
val prefixWithTest: Directive0 = mapHttpResponseEntity(prefixEntity)
val route = prefixWithTest(complete("abc"))

Get("/") ~> route ~> check {
responseAs[String] === "testabc"

}

5.7. spray-routing 77



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

mapHttpResponseHeaders Changes the list of response headers that was generated by the inner route.

Signature
def mapHttpResponseHeaders(f: List[HttpHeader] List[HttpHeader]): Directive0

Description The mapHttpResponseHeaders directive is used as a building block for Custom Directives to
transform the list of response headers that was generated by the inner route.

See Directives transforming the response for similar directives.

Example
// adds all request headers to the response
val echoRequestHeaders = extract(_.request.headers).flatMap(respondWithHeaders)

val removeIdHeader = mapHttpResponseHeaders(_.filterNot(_.lowercaseName == "id"))
val route =
removeIdHeader {
echoRequestHeaders {

complete("test")
}

}

Get("/") ~> RawHeader("id", "12345") ~> RawHeader("id2", "67890") ~> route ~> check {
header("id") === None
header("id2").get.value === "67890"

}

mapHttpResponsePart Changes response parts generated by the inner route.

Signature
def mapHttpResponsePart(f: HttpResponsePart HttpResponsePart): Directive0

Description The mapHttpResponsePart directive is used as a building block for Custom Directives to trans-
form a response part that was generated by the inner route. In contrast to mapHttpResponse this directive allows to
transform parts of chunked responses.

See Directives transforming the response for similar directives.

Example
val prefixChunks = mapHttpResponsePart {
case MessageChunk(data, _) => MessageChunk(HttpData("prefix"+data.asString))
case x => x

}
val route =
prefixChunks { ctx =>
val resp = ctx.responder
resp ! ChunkedResponseStart(HttpResponse())
resp ! MessageChunk(HttpData("abc"))
resp ! MessageChunk(HttpData("def"))
resp ! ChunkedMessageEnd

}

78 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/") ~> route ~> check {
chunks ===
List(MessageChunk(HttpData("prefixabc")),

MessageChunk(HttpData("prefixdef")))
}

mapInnerRoute Changes the execution model of the inner route by wrapping it with arbitrary logic.

Signature
def mapInnerRoute(f: Route Route): Directive0

Description The mapInnerRoute directive is used as a building block for Custom Directives to replace the inner
route with any other route. Usually, the returned route wraps the original one with custom execution logic.

Example
val completeWithInnerException =
mapInnerRoute { route => ctx =>
try {

route(ctx)
} catch {

case NonFatal(e) => ctx.complete(s"Got ${e.getClass.getSimpleName} '${e.getMessage}'")
}

}

val route =
completeWithInnerException {
complete(throw new IllegalArgumentException("BLIP! BLOP! Everything broke"))

}

Get("/") ~> route ~> check {
responseAs[String] === "Got IllegalArgumentException 'BLIP! BLOP! Everything broke'"

}

mapRejections Transforms the list of rejections the inner route produced.

Signature
def mapRejections(f: List[Rejection] List[Rejection]): Directive0

Description The mapRejections directive is used as a building block for Custom Directives to transform a list
of rejections from the inner route to a new list of rejections.

See Directives transforming the response for similar directives.

Example
// ignore any rejections and replace them by AuthorizationFailedRejection
val replaceByAuthorizationFailed = mapRejections(_ => List(AuthorizationFailedRejection))
val route =
replaceByAuthorizationFailed {
path("abc")(complete("abc"))

5.7. spray-routing 79



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

}

Get("/") ~> route ~> check {
rejection === AuthorizationFailedRejection

}

mapRequest Transforms the request before it is handled by the inner route.

Signature
def mapRequest(f: HttpRequest HttpRequest): Directive0

Description The mapRequest directive is used as a building block for Custom Directives to transform a request
before it is handled by the inner route. Changing the request.uri parameter has no effect on path matching in
the inner route because the unmatched path is a separate field of the RequestContext value which is passed into
routes. To change the unmatched path or other fields of the RequestContext use the mapRequestContext directive.

See Directives transforming the request for an overview of similar directives.

Example
def transformToPostRequest(req: HttpRequest): HttpRequest = req.copy(method = HttpMethods.POST)
val route =
mapRequest(transformToPostRequest) {
requestInstance { req =>

complete(s"The request method was ${req.method}")
}

}

Get("/") ~> route ~> check {
responseAs[String] === "The request method was POST"

}

mapRequestContext Transforms the RequestContext before it is passed to the inner route.

Signature
def mapRequestContext(f: RequestContext RequestContext): Directive0

Description The mapRequestContext directive is used as a building block for Custom Directives to transform
the request context before it is passed to the inner route. To change only the request value itself the mapRequest
directive can be used instead.

See Directives transforming the request for an overview of similar directives.

Example
val probe = TestProbe()
val replaceResponder = mapRequestContext(_.copy(responder = probe.ref))

val route =
replaceResponder {
complete("abc")

80 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

}

Get("/abc/def/ghi") ~> route ~> check {
handled === false

}
probe.expectMsgType[HttpMessagePartWrapper].messagePart === HttpResponse(entity = HttpEntity("abc"))

mapRouteResponse Changes the message the inner route sends to the responder.

Signature
def mapRouteResponse(f: Any Any): Directive0

Description The mapRouteResponse directive is used as a building block for Custom Directives to transform
what the inner route sends to the responder (see The Responder Chain).

See Directives hooking into the responder chain for similar directives.

Example
val rejectAll = // not particularly useful directive
mapRouteResponse {
case _ => Rejected(List(AuthorizationFailedRejection))

}
val route =

rejectAll {
complete("abc")

}

Get("/") ~> route ~> check {
rejections.nonEmpty === true

}

mapRouteResponsePF Changes the message the inner route sends to the responder.

Signature
def mapRouteResponsePF(f: PartialFunction[Any, Any]): Directive0

Description The mapRouteResponsePF directive is used as a building block for Custom Directives to transform
what the inner route sends to the responder (see The Responder Chain). It’s similar to the mapRouteResponse directive
but allows to specify a partial function that doesn’t have to handle all the incoming response messages.

See Directives hooking into the responder chain for similar directives.

Example
case object MyCustomRejection extends Rejection
val rejectRejections = // not particularly useful directive
mapRouteResponsePF {
case Rejected(_) => Rejected(List(AuthorizationFailedRejection))

}
val route =

5.7. spray-routing 81



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

rejectRejections {
reject(MyCustomRejection)

}

Get("/") ~> route ~> check {
rejection === AuthorizationFailedRejection

}

noop A directive that passes the request unchanged to its inner route.

Signature
def noop: Directive0

Description The directive is usually used as a “neutral element” when combining directives generically.

Example
Get("/") ~> noop(complete("abc")) ~> check {

responseAs[String] === "abc"
}

pass An alias for the noop directive.

provide Provides a constant value to the inner route.

Signature
def provide[T](value: T): Directive1[T]

Description The provide directive is used as a building block for Custom Directives to provide a single value to the
inner route. To provide several values use the hprovide directive.

See Directives to provide values to inner routes for an overview of similar directives.

Example
def providePrefixedString(value: String): Directive1[String] = provide("prefix:"+value)
val route =
providePrefixedString("test") { value =>
complete(value)

}
Get("/") ~> route ~> check {

responseAs[String] === "prefix:test"
}

routeRouteResponse Replaces the message the inner route sends to the responder with the result of a new route.

Signature

82 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

def routeRouteResponse(f: PartialFunction[Any, Route]): Directive0

Description The routeRouteResponse directive is used as a building block for Custom Directives to replace
what the inner route sends to the responder (see The Responder Chain) with the result of a completely new route.

See Directives hooking into the responder chain for similar directives.

Example
val completeWithRejectionNames =
routeRouteResponse {
case Rejected(rejs) => complete(s"Got these rejections: ${rejs.map(_.getClass.getSimpleName).mkString(", ")}")

}

val route = completeWithRejectionNames {
reject(AuthorizationFailedRejection) ~
post(complete("post"))

}
Get("/") ~> route ~> check {

responseAs[String] === "Got these rejections: AuthorizationFailedRejection$, MethodRejection"
}

CacheConditionDirectives

conditional Wraps its inner route with support for Conditional Requests as defined by http://tools.ietf.org/html/draft-
ietf-httpbis-p4-conditional-26.

Signature
def conditional(eTag: EntityTag, lastModified: DateTime): Directive0

Description Depending on the given eTag and lastModified values this directive immediately responds with
304 Not Modified or 412 Precondition Failed (without calling its inner route) if the request comes
with the respective conditional headers. Otherwise the requests is simply passed on to its inner route.

The algorithm implemented by this directive closely follows what is defined in this section of the HTTPbis spec.

All responses (the ones produces by this directive itself as well as the ones coming back from the inner route) are
augmented with respective ETag and Last-Modified response headers.

Since this directive requires the EntityTag and lastModified time stamp for the resource as concrete arguments
it is usually used quite deep down in the route structure (i.e. close to the leaf-level), where the exact resource targeted
by the request has already been established and the respective ETag/Last-Modified values can be determined.

The FileAndResourceDirectives internally use the conditional directive for ETag and Last-Modified support (if
the spray.routing.file-get-conditional setting is enabled).

CachingDirectives

alwaysCache Wraps its inner Route with caching support using the given spray.caching.Cache implemen-
tation and the in-scope keyer function.

5.7. spray-routing 83

http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26#section-6
https://datatracker.ietf.org/wg/httpbis/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Signature
def alwaysCache(cache: Cache[CachingDirectives.RouteResponse])

(implicit keyer: CacheKeyer, factory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description Like cache but doesn’t regard a Cache-Control request header for deciding if the cache should be
circumvented.

Note: Caching directives are not automatically in scope, see Usage about how to enable them.

Example
var i = 0
val route =
cache(routeCache()) {
complete {

i += 1
i.toString

}
}

Get("/") ~> route ~> check {
responseAs[String] === "1"

}
// now cached
Get("/") ~> route ~> check {

responseAs[String] === "1"
}
// caching prevented
Get("/") ~> `Cache-Control`(CacheDirectives.`no-cache`) ~> route ~> check {
responseAs[String] === "2"

}

cache Wraps its inner Route with caching support using the given spray.caching.Cache implementation and
the in-scope keyer function.

Signature
def cache(cache: Cache[CachingDirectives.RouteResponse])

(implicit keyer: CacheKeyer, factory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets. 1

The routeCache constructor for caches:

def routeCache(maxCapacity: Int = 500, initialCapacity: Int = 16, timeToLive: Duration = Duration.Inf,
timeToIdle: Duration = Duration.Inf): Cache[RouteResponse] =

LruCache(maxCapacity, initialCapacity, timeToLive, timeToIdle)

1 See The Magnet Pattern for an explanation of magnet-based overloading.
1 See The Magnet Pattern for an explanation of magnet-based overloading.

84 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description The directive tries to serve the request from the given cache and only if not found runs the inner route
to generate a new response. A simple cache can be constructed using routeCache constructor.

The directive is implemented in terms of cachingProhibited and alwaysCache. This means that clients can circumvent
the cache using a Cache-Control request header. This behavior may not be adequate depending on your backend
implementation (i.e how expensive a call circumventing the cache into the backend is). If you want to force all requests
to be handled by the cache use the alwaysCache directive instead. In complexer cases, e.g. when the backend can
validate that a cached request is still acceptable according to the request Cache-Control header the predefined caching
directives may not be sufficient and a custom solution is necessary.

Note: Caching directives are not automatically in scope, see Usage about how to enable them.

Example
var i = 0
val route =
cache(routeCache()) {
complete {

i += 1
i.toString

}
}

Get("/") ~> route ~> check {
responseAs[String] === "1"

}
// now cached
Get("/") ~> route ~> check {

responseAs[String] === "1"
}
Get("/") ~> route ~> check {

responseAs[String] === "1"
}

cachingProhibited Passes only requests that explicitly forbid caching with a Cache-Control header with either
a no-cache or max-age=0 setting.

Signature
def cachingProhibited: Directive0

Description This directive is used to filter out requests that forbid caching. It is used as a building block of the cache
directive to prevent caching if the client requests so.

Note: Caching directives are not automatically in scope, see Usage about how to enable them.

Example
val route =
cachingProhibited {
complete("abc")

}

5.7. spray-routing 85



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/") ~> route ~> check {
handled === false

}
Get("/") ~> `Cache-Control`(CacheDirectives.`no-cache`) ~> route ~> check {
responseAs[String] === "abc"

}

Usage To use the caching directives you need to add a dependency to the spray-caching module. Caching directives
are not automatically in scope using the HttpService or Directives trait but must either be brought into scope
by extending from CachingDirectives or by using import CachingDirectives._.

ChunkingDirectives

autoChunk Converts unchunked responses coming back from its inner route into chunked responses of which each
chunk is smaller or equal to the given size if the response entity is at least as large as the given threshold.

Signature
def autoChunk(maxChunkSize: Long)(implicit factory: ActorRefFactory): Directive0
def autoChunk(threshold: Long, maxChunkSize: Long)(implicit factory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description The parameter of type ChunkSizeMagnet decides for which values of HttpData the directive
should apply and how to chunk the data. Predefined instances of ChunkSizeMagnet decide this on the basis of
two parameters, the threshold size and the chunk size (if only one number is supplied it is used for both values). The
threshold parameter decides from which size on an entity should be converted into a chunked request. The chunk size
parameter decides how big each chunk should be at most.

See the autoChunkFileBytes directive for an alternative that adds another restriction to chunk a response only when it
consists only of FileBytes, i.e. it is completely backed by a file.

Auto chunking is especially effective in combination with encoding. Encoding (gzip, deflate) always encodes the
complete response part in one step. For big entities this can be a disadvantage especially when the data has to be read
from a file into JVM heap buffers. Auto chunking helps here because it produces a lazy stream of response chunks
that can be encoded one by one by an encoder so that only one chunk is loaded into the JVM heap at one time.

Example
val route =
autoChunk(5) {
path("long")(complete("This is a long text")) ~
path("short")(complete("Short"))

}

Get("/short") ~> route ~> check {
responseAs[String] === "Short"

}
Get("/long") ~> route ~> check {

val HttpResponse(_, c0, _, _) = response
val List(c1, c2, c3) = chunks
c0.data === HttpData("This ")

1 See The Magnet Pattern for an explanation of magnet-based overloading.

86 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

c1.data === HttpData("is a ")
c2.data === HttpData("long ")
c3.data === HttpData("text")

}

autoChunkFileBytes Converts unchunked responses coming back from its inner route into chunked responses of
which each chunk is smaller or equal to the given size if the response entity is at least as large as the given threshold
and contains only HttpData.FileBytes.

Signature
def autoChunkFileBytes(maxChunkSize: Long)(implicit factory: ActorRefFactory): Directive0
def autoChunkFileBytes(threshold: Long, maxChunkSize: Long)(implicit factory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description See autoChunk for a more detailed description of the parameters as this directive is basically the same
with the added restriction to chunk only entities completely backed by files.

Example
val route =
autoChunkFileBytes(5) {
path("long")(complete("This is a long text"))

}

Get("/long") ~> route ~> check {
// don't chunk long request because it's not from a file
responseAs[String] === "This is a long text"

}

CookieDirectives

cookie Extracts a cookie with a given name from a request or otherwise rejects the request with a
MissingCookieRejection if the cookie is missing.

Signature
def cookie(name: String): Directive1[HttpCookie]

Description Use the optionalCookie directive instead if you want to support missing cookies in your inner route.

Example
val route =
cookie("userName") { nameCookie =>
complete(s"The logged in user is '${nameCookie.content}'")

}

Get("/") ~> Cookie(HttpCookie("userName", "paul")) ~> route ~> check {

1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 87



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

responseAs[String] === "The logged in user is 'paul'"
}
// missing cookie
Get("/") ~> route ~> check {

rejection === MissingCookieRejection("userName")
}
Get("/") ~> sealRoute(route) ~> check {

responseAs[String] === "Request is missing required cookie 'userName'"
}

deleteCookie Adds a header to the response to request the removal of the cookie with the given name on the client.

Signature
def deleteCookie(first: HttpCookie, more: HttpCookie*): Directive0
def deleteCookie(name: String, domain: String = "", path: String = ""): Directive0

Description Use the setCookie directive to update a cookie.

Example
val route =
deleteCookie("userName") {
complete("The user was logged out")

}

Get("/") ~> route ~> check {
responseAs[String] === "The user was logged out"
header[`Set-Cookie`] === Some(`Set-Cookie`(HttpCookie("userName", content = "deleted", expires = Some(DateTime.MinValue))))

}

optionalCookie Extracts an optional cookie with a given name from a request.

Signature
def optionalCookie(name: String): Directive1[Option[HttpCookie]]

Description Use the cookie directive instead if the inner route does not handle a missing cookie.

Example
val route =
optionalCookie("userName") {
case Some(nameCookie) => complete(s"The logged in user is '${nameCookie.content}'")
case None => complete("No user logged in")

}

Get("/") ~> Cookie(HttpCookie("userName", "paul")) ~> route ~> check {
responseAs[String] === "The logged in user is 'paul'"

}
Get("/") ~> route ~> check {

88 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

responseAs[String] === "No user logged in"
}

setCookie Adds a header to the response to request the update of the cookie with the given name on the client.

Signature
def setCookie(first: HttpCookie, more: HttpCookie*): Directive0

Description Use the deleteCookie directive to delete a cookie.

Example
val route =
setCookie(HttpCookie("userName", content = "paul")) {
complete("The user was logged in")

}

Get("/") ~> route ~> check {
responseAs[String] === "The user was logged in"
header[`Set-Cookie`] === Some(`Set-Cookie`(HttpCookie("userName", content = "paul")))

}

DebuggingDirectives

logRequest Logs the request.

Signature
def logRequest(marker: String)(implicit log: LoggingContext): Directive0
def logRequest(marker: String, level: LogLevel)(implicit log: LoggingContext): Directive0
def logRequest(show: HttpRequest => String)(implicit log: LoggingContext): Directive0
def logRequest(show: HttpRequest => LogEntry)(implicit log: LoggingContext): Directive0
def logRequest(magnet: LoggingMagnet[HttpRequest => Unit])(implicit log: LoggingContext): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description Logs the request using the supplied LoggingMagnet[HttpRequest => Unit]. This
LoggingMagnet is a wrapped function HttpRequest => Unit that can be implicitly created from the dif-
ferent constructors shown above. These constructors build a LoggingMagnet from these components:

• A marker to prefix each log message with.

• A log level.

• A show function that calculates a string representation for a request.

• An implicit LoggingContext that is used to emit the log message.

• A function that creates a LogEntry which is a combination of the elements above.
1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 89



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

It is also possible to use any other function HttpRequest => Unit for logging by wrapping it with
LoggingMagnet. See the examples for ways to use the logRequest directive.

Use logResponse for logging the response, or logRequestResponse for logging both.

Example
// different possibilities of using logRequest

// The first alternatives use an implicitly available LoggingContext for logging
// marks with "get-user", log with debug level, HttpRequest.toString
DebuggingDirectives.logRequest("get-user")

// marks with "get-user", log with info level, HttpRequest.toString
DebuggingDirectives.logRequest("get-user", Logging.InfoLevel)

// logs just the request method at debug level
def requestMethod(req: HttpRequest): String = req.method.toString
DebuggingDirectives.logRequest(requestMethod _)

// logs just the request method at info level
def requestMethodAsInfo(req: HttpRequest): LogEntry = LogEntry(req.method.toString, Logging.InfoLevel)
DebuggingDirectives.logRequest(requestMethodAsInfo _)

// This one doesn't use the implicit LoggingContext but uses `println` for logging
def printRequestMethod(req: HttpRequest): Unit = println(req.method)
val logRequestPrintln = DebuggingDirectives.logRequest(LoggingMagnet(printRequestMethod))

Get("/") ~> logRequestPrintln(complete("logged")) ~> check {
responseAs[String] === "logged"

}

logRequestResponse Logs request and response.

Signature
def logRequestResponse(marker: String)(implicit log: LoggingContext): Directive0
def logRequestResponse(marker: String, level: LogLevel)(implicit log: LoggingContext): Directive0
def logRequestResponse(show: HttpRequest HttpResponsePart Option[LogEntry])

(implicit log: LoggingContext): Directive0
def logRequestResponse(show: HttpRequest Any Option[LogEntry])(implicit log: LoggingContext): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description This directive is a combination of logRequest and logResponse. See logRequest for the
general description how these directives work.

Example
// different possibilities of using logRequestResponse

// The first alternatives use an implicitly available LoggingContext for logging
// marks with "get-user", log with debug level, HttpRequest.toString, HttpResponse.toString
DebuggingDirectives.logRequestResponse("get-user")

1 See The Magnet Pattern for an explanation of magnet-based overloading.

90 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

// marks with "get-user", log with info level, HttpRequest.toString, HttpResponse.toString
DebuggingDirectives.logRequestResponse("get-user", Logging.InfoLevel)

// logs just the request method and response status at info level
def requestMethodAndResponseStatusAsInfo(req: HttpRequest): Any => Option[LogEntry] = {

case res: HttpResponse => Some(LogEntry(req.method + ":" + res.message.status, Logging.InfoLevel))
case _ => None // other kind of responses

}
DebuggingDirectives.logRequestResponse(requestMethodAndResponseStatusAsInfo _)

// This one doesn't use the implicit LoggingContext but uses `println` for logging
def printRequestMethodAndResponseStatus(req: HttpRequest)(res: Any): Unit =

println(requestMethodAndResponseStatusAsInfo(req)(res).map(_.obj.toString).getOrElse(""))
val logRequestResponsePrintln = DebuggingDirectives.logRequestResponse(LoggingMagnet(printRequestMethodAndResponseStatus))

Get("/") ~> logRequestResponsePrintln(complete("logged")) ~> check {
responseAs[String] === "logged"

}

logResponse Logs the response.

Signature
def logResponse(marker: String)(implicit log: LoggingContext): Directive0
def logResponse(marker: String, level: LogLevel)(implicit log: LoggingContext): Directive0
def logResponse(show: Any => String)(implicit log: LoggingContext): Directive0
def logResponse(show: Any => LogEntry)(implicit log: LoggingContext): Directive0
def logResponse(magnet: LoggingMagnet[Any => Unit])(implicit log: LoggingContext): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description See logRequest for the general description how these directives work. This directive is different as it
requires a LoggingMagnet[Any => Unit]. Instead of just logging HttpResponses, logResponse is able
to log anything passing through The Responder Chain (which can either be a HttpResponsePart or a Rejected
message reporting rejections).

Use logRequest for logging the request, or logRequestResponse for logging both.

Example
// different possibilities of using logResponse

// The first alternatives use an implicitly available LoggingContext for logging
// marks with "get-user", log with debug level, HttpResponse.toString
DebuggingDirectives.logResponse("get-user")

// marks with "get-user", log with info level, HttpResponse.toString
DebuggingDirectives.logResponse("get-user", Logging.InfoLevel)

// logs just the response status at debug level
def responseStatus(res: Any): String = res match {
case x: HttpResponse => x.status.toString
case _ => "unknown response part"

}

1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 91



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

DebuggingDirectives.logResponse(responseStatus _)

// logs just the response status at info level
def responseStatusAsInfo(res: Any): LogEntry = LogEntry(responseStatus(res), Logging.InfoLevel)
DebuggingDirectives.logResponse(responseStatusAsInfo _)

// This one doesn't use the implicit LoggingContext but uses `println` for logging
def printResponseStatus(res: Any): Unit = println(responseStatus(res))
val logResponsePrintln = DebuggingDirectives.logResponse(LoggingMagnet(printResponseStatus))

Get("/") ~> logResponsePrintln(complete("logged")) ~> check {
responseAs[String] === "logged"

}

EncodingDirectives

compressResponse Uses the first of a given number of encodings that the client accepts. If none are accepted the
request is rejected with an UnacceptedResponseEncodingRejection.

Signature
def compressResponse()(implicit refFactory: ActorRefFactory): Directive0
def compressResponse(e1: Encoder)(implicit refFactory: ActorRefFactory): Directive0
def compressResponse(e1: Encoder, e2: Encoder)(implicit refFactory: ActorRefFactory): Directive0
def compressResponse(e1: Encoder, e2: Encoder, e3: Encoder)(implicit refFactory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description The compressResponse directive allows to specify zero to three encoders to try in the specified
order. If none are specified the tried list is Gzip, Deflate, and then NoEncoding.

The compressResponse() directive (without an explicit list of encoders given) will therefore behave as follows:

Accept-Encoding header resulting response
Accept-Encoding: gzip compressed with Gzip
Accept-Encoding: deflate compressed with Deflate
Accept-Encoding: deflate, gzip compressed with Gzip
Accept-Encoding: identity uncompressed
no Accept-Encoding header present compressed with Gzip

For an overview of the different compressResponse directives see When to use which compression directive?.

Example This example shows the behavior of compressResponse without any encoders specified:

val route = compressResponse() { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(gzip)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

1 See The Magnet Pattern for an explanation of magnet-based overloading.

92 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

response must haveContentEncoding(deflate)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

status === StatusCodes.OK
response must haveContentEncoding(identity)
responseAs[String] === "content"

}

This example shows the behaviour of compressResponse(Gzip):

val route = compressResponse(Gzip) { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(gzip)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}

compressResponseIfRequested Only compresses the response when specifically requested by the
Accept-Encoding request header (i.e. the default is “no compression”).

Signature
def compressResponseIfRequested()(implicit refFactory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description The compressResponseIfRequested directive is an alias for
compressResponse(NoEncoding, Gzip, Deflate) and will behave as follows:

Accept-Encoding header resulting response
Accept-Encoding: gzip compressed with Gzip
Accept-Encoding: deflate compressed with Deflate
Accept-Encoding: deflate, gzip compressed with Gzip
Accept-Encoding: identity uncompressed
no Accept-Encoding header present uncompressed

For an overview of the different compressResponse directives see When to use which compression directive?.

Example
val route = compressResponseIfRequested() { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(identity)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)

1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 93



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

response must haveContentEncoding(deflate)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

response must haveContentEncoding(identity)
}

decodeRequest Tries to decode the request with the specified Decoder or rejects the request with an
UnacceptedRequestEncodingRejection(supportedEncoding).

Signature
def decodeRequest(decoder: Decoder): Directive0

Description The decodeRequest directive is the building block for the decompressRequest directive.

decodeRequest and decompressRequest are related like this:

decompressRequest(Gzip) = decodeRequest(Gzip)
decompressRequest(a, b, c) = decodeRequest(a) | decodeRequest(b) | decodeRequest(c)
decompressRequest() = decodeRequest(Gzip) | decodeRequest(Deflate) | decodeRequest(NoEncoding)

Example
val route =
decodeRequest(Gzip) {
entity(as[String]) { content: String =>
complete(s"Request content: '$content'")

}
}

Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> route ~> check {
responseAs[String] === "Request content: 'Hello'"

}
Get("/", helloDeflated) ~> `Content-Encoding`(deflate) ~> route ~> check {

rejection === UnsupportedRequestEncodingRejection(gzip)
}
Get("/", "hello") ~> `Content-Encoding`(identity) ~> route ~> check {

rejection === UnsupportedRequestEncodingRejection(gzip)
}

decompressRequest Decompresses the request if it is can be decoded with one of the given decoders. Otherwise,
the request is rejected with an UnsupportedRequestEncodingRejection(supportedEncoding).

Signature
def decompressRequest(): Directive0
def decompressRequest(first: Decoder, more: Decoder*): Directive0

Description The decompressRequest directive allows either to specify a list of decoders or none at all. If no
Decoder is specified Gzip, Deflate, or NoEncoding will be tried.

The decompressRequest directive will behave as follows:

94 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Content-Encoding header resulting request
Content-Encoding: gzip decompressed
Content-Encoding: deflate decompressed
Content-Encoding: identity unchanged
no Content-Encoding header present unchanged

For an overview of the different decompressRequest directives and which one to use when, see When to use
which decompression directive?.

Example This example shows the behavior of decompressRequest() without any decoders specified:

val route =
decompressRequest() {
entity(as[String]) { content: String =>
complete(s"Request content: '$content'")

}
}

Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> route ~> check {
responseAs[String] === "Request content: 'Hello'"

}
Get("/", helloDeflated) ~> `Content-Encoding`(deflate) ~> route ~> check {

responseAs[String] === "Request content: 'Hello'"
}
Get("/", "hello uncompressed") ~> `Content-Encoding`(identity) ~> route ~> check {

responseAs[String] === "Request content: 'hello uncompressed'"
}

This example shows the behaviour of decompressRequest(Gzip, NoEncoding):

val route =
decompressRequest(Gzip, NoEncoding) {
entity(as[String]) { content: String =>
complete(s"Request content: '$content'")

}
}

Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> route ~> check {
responseAs[String] === "Request content: 'Hello'"

}
Get("/", helloDeflated) ~> `Content-Encoding`(deflate) ~> route ~> check {

rejections === List(UnsupportedRequestEncodingRejection(gzip), UnsupportedRequestEncodingRejection(identity))
}
Get("/", "hello uncompressed") ~> `Content-Encoding`(identity) ~> route ~> check {

responseAs[String] === "Request content: 'hello uncompressed'"
}

encodeResponse Tries to encode the response with the specified Encoder or rejects the request with an
UnacceptedResponseEncodingRejection(supportedEncodings).

Signature
def encodeResponse(encoder: Encoder)(implicit refFactory: ActorRefFactory): Directive0
def encodeResponse(encoder: Encoder, threshold: Long, maxChunkSize: Long)

(implicit refFactory: ActorRefFactory): Directive0

5.7. spray-routing 95



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The signature shown is simplified, the real signature uses magnets. 1

Description The directive automatically applies the autoChunkFileBytes directive as well to avoid having to
load an entire file into JVM heap.

The parameter to the directive is either just an Encoder or all of an Encoder, a threshold, and a chunk size to
configure the automatically applied autoChunkFileBytes directive.

The encodeResponse directive is the building block for the compressResponse and
compressResponseIfRequested directives.

encodeResponse, compressResponse, and compressResponseIfRequested are related like this:

compressResponse(Gzip) = encodeResponse(Gzip)
compressResponse(a, b, c) = encodeResponse(a) | encodeResponse(b) | encodeResponse(c)
compressResponse() = encodeResponse(Gzip) | encodeResponse(Deflate) | encodeResponse(NoEncoding)
compressResponseIfRequested() = encodeResponse(NoEncoding) | encodeResponse(Gzip) | encodeResponse(Deflate)

Example
val route = encodeResponse(Gzip) { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(gzip)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}

requestEncodedWith Passes the request to the inner route if the request is encoded with the argument encoding.
Otherwise, rejects the request with an UnacceptedRequestEncodingRejection(encoding).

Signature
def requestEncodedWith(encoding: HttpEncoding): Directive0

Description This directive is the building block for decodeRequest to reject unsupported encodings.

responseEncodingAccepted Passes the request to the inner route if the request accepts the argument encoding.
Otherwise, rejects the request with an UnacceptedResponseEncodingRejection(encoding).

Signature
def responseEncodingAccepted(encoding: HttpEncoding): Directive0

Description This directive is the building block for encodeResponse to reject unsupported encodings.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

96 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

When to use which compression directive? There are three different directives for performing response compress-
ing with slightly different behavior:

encodeResponse Always compresses the response with the one given encoding, rejects the request with an
UnacceptedResponseEncodingRejection if the client doesn’t accept the given encoding. The other
compression directives are built upon this one. See its description for an overview how they relate exactly.

compressResponse Uses the first of a given number of encodings that the client accepts. If none are accepted the
request is rejected.

compressResponseIfRequested Only compresses the response when specifically requested by the
Accept-Encoding request header (i.e. the default is “no compression”).

See the individual directives for more detailed usage examples.

When to use which decompression directive? There are two different directives for performing request decom-
pressing with slightly different behavior:

decodeRequest Attempts to decompress the request using the one given decoder, rejects the request with an
UnsupportedRequestEncodingRejection if the request is not encoded with the given encoder.

decompressRequest Decompresses the request if it is encoded with one of the given encoders. If the request’s
encoding doesn’t match one of the given encoders it is rejected.

Combining compression and decompression As with all Spray directives, the above single directives can be com-
bined using & to produce compound directives that will decompress requests and compress responses in whatever
combination required. Some examples:

"the (decompressRequest & compressResponse) compound directive" should {
val decompressCompress = (decompressRequest() & compressResponse())
"decompress a GZIP compressed request and produce a GZIP compressed response if the request has no Accept-Encoding header" in {
Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> {

decompressCompress { echoRequestContent }
} ~> check {

response must haveContentEncoding(gzip)
body === HttpEntity(ContentType(`text/plain`, `UTF-8`), helloGzipped)

}
}
"decompress a GZIP compressed request and produce a Deflate compressed response if the request has an `Accept-Encoding: deflate` header" in {
Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> `Accept-Encoding`(deflate) ~> {

decompressCompress { echoRequestContent }
} ~> check {

response must haveContentEncoding(deflate)
body === HttpEntity(ContentType(`text/plain`, `UTF-8`), helloDeflated)

}
}
"decompress an uncompressed request and produce a GZIP compressed response if the request has an `Accept-Encoding: gzip` header" in {
Get("/", "Hello") ~> `Accept-Encoding`(gzip) ~> {

decompressCompress { echoRequestContent }
} ~> check {

response must haveContentEncoding(gzip)
body === HttpEntity(ContentType(`text/plain`, `UTF-8`), helloGzipped)

}
}

}

5.7. spray-routing 97



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

ExecutionDirectives

detach Executes the inner route inside a future.

Signature
def detach()(implicit ec: ExecutionContext): Directive0
def detach()(implicit refFactory: ActorRefFactory): Directive0
def detach(ec: ExecutionContext): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description This directive needs either an implicit ExecutionContext (detach()) or an explicit one
(detach(ec)).

Caution: It is a common mistake to access actor state from code run inside a future that is created inside an
actor by accidentally accessing instance methods or variables of the actor that are available in the scope. This also
applies to the detach directive if a route is run inside an actor which is the usual case. Make sure not to access
any actor state from inside the detach block directly or indirectly.
A lesser known fact is that the current semantics of executing The Routing Tree encompasses that every route that
rejects a request also runs the alternative routes chained with ~. This means that when a route is rejected out of a
detach block, also all the alternatives tried afterwards are then run out of the future originally created for running
the detach block and not any more from the original (actor) context starting the request processing. To avoid that
use detach only at places inside the routing tree where no rejections are expected.

Example
val route =
detach() {
complete("Result") // route executed in future

}
Get("/") ~> route ~> check {

responseAs[String] === "Result"
}

This example demonstrates the effect of the note above:

/// / a custom directive to extract the id of the current thread
def currentThreadId: Directive1[Long] = extract(_ => Thread.currentThread().getId)
val route =
currentThreadId { originThread =>
path("rejectDetached") {

detach() {
reject()

}
} ~
path("reject") {

reject()
} ~
currentThreadId { alternativeThread =>
complete(s"$originThread,$alternativeThread")

}
}

1 See The Magnet Pattern for an explanation of magnet-based overloading.

98 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/reject") ~> route ~> check {
val Array(original, alternative) = responseAs[String].split(",")
original === alternative

}
Get("/rejectDetached") ~> route ~> check {

val Array(original, alternative) = responseAs[String].split(",")
original !== alternative

}

dynamic Enforces that the code constructing the inner route is run for every request.

Signature
def dynamic: ByNameDirective0

Description dynamic is a special directive because, in fact, it doesn’t implement Directive at all. That means
you cannot use it in combination with the usual directive operators.

Use dynamicIf to run the inner route constructor dynamically depending on a static condition.

Example
var value = 0
val route =
dynamic {
value += 1 /// executed for each request
complete(s"Result is now $value") // route executed in future

}
Get("/") ~> route ~> check {

responseAs[String] === "Result is now 1"
}
Get("/") ~> route ~> check {

responseAs[String] === "Result is now 2"
}

dynamicIf Enforces that the code constructing the inner route is run for every request if the condition is true.

Signature
def dynamicIf(enabled: Boolean): ByNameDirective0

Description The effect of dynamicIf(true) is the same as for dynamic. The effect of dynamicIf(false)
is the same as just the nested block.

dynamicIf is a special directive because, in fact, it doesn’t implement Directive at all. That means you cannot
use it in combination with the usual directive operators.

Use dynamic to run the inner route constructor dynamically unconditionally.

Example

5.7. spray-routing 99



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

def countDynamically(dyn: Boolean) = {
var value = 0
dynamicIf(dyn) {
value += 1 /// executed for each request
complete(s"Result is now $value") // route executed in future

}
}

val route =
path("dynamic")(countDynamically(true)) ~
path("static")(countDynamically(false))

Get("/dynamic") ~> route ~> check {
responseAs[String] === "Result is now 1"

}
Get("/dynamic") ~> route ~> check {

responseAs[String] === "Result is now 2"
}
Get("/dynamic") ~> route ~> check {

responseAs[String] === "Result is now 3"
}

Get("/static") ~> route ~> check {
responseAs[String] === "Result is now 1"

}
Get("/static") ~> route ~> check {

responseAs[String] === "Result is now 1"
}
Get("/static") ~> route ~> check {

responseAs[String] === "Result is now 1"
}

handleExceptions Catches exceptions thrown by the inner route and handles them using the specified
ExceptionHandler.

Signature
def handleExceptions(handler: ExceptionHandler): Directive0

Description Using this directive is an alternative to using a global implicitly defined ExceptionHandler that
applies to the complete route.

See Exception Handling for general information about options for handling exceptions.

Example
val divByZeroHandler = ExceptionHandler {
case _: ArithmeticException => complete(StatusCodes.BadRequest, "You've got your arithmetic wrong, fool!")

}
val route =
path("divide" / IntNumber / IntNumber) { (a, b) =>
handleExceptions(divByZeroHandler) {

complete(s"The result is ${a / b}")
}

}

100 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/divide/10/5") ~> route ~> check {
responseAs[String] === "The result is 2"

}
Get("/divide/10/0") ~> route ~> check {

status === StatusCodes.BadRequest
responseAs[String] === "You've got your arithmetic wrong, fool!"

}

handleRejections Handles rejections produced by the inner route and handles them using the specified
RejectionHandler.

Signature
def handleRejections(handler: RejectionHandler): Directive0

Description Using this directive is an alternative to using a global implicitly defined RejectionHandler that
applies to the complete route.

See Rejections for general information about options for handling rejections.

Example
val totallyMissingHandler = RejectionHandler {

case Nil /* secret code for path not found */ =>
complete(StatusCodes.NotFound, "Oh man, what you are looking for is long gone.")

}
val route =
pathPrefix("handled") {
handleRejections(totallyMissingHandler) {

path("existing")(complete("This path exists"))
}

}

Get("/handled/existing") ~> route ~> check {
responseAs[String] === "This path exists"

}
Get("/missing") ~> sealRoute(route) /* applies default handler */ ~> check {

status === StatusCodes.NotFound
responseAs[String] === "The requested resource could not be found."

}
Get("/handled/missing") ~> route ~> check {

status === StatusCodes.NotFound
responseAs[String] === "Oh man, what you are looking for is long gone."

}

FileAndResourceDirectives

Like the RouteDirectives the FileAndResourceDirectives are somewhat special in spray’s routing DSL. Con-
trary to all other directives they do not produce instances of type Directive[L <: HList] but rather “plain”
routes of type Route. The reason is that they are not meant for wrapping an inner route (like most other directives,
as intermediate-level elements of a route structure, do) but rather form the actual route structure leaves.

So in most cases the inner-most element of a route structure branch is one of the RouteDirectives or
FileAndResourceDirectives.

5.7. spray-routing 101



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

getFromBrowseableDirectory The single-directory variant of getFromBrowseableDirectories.

Signature
def getFromBrowseableDirectory(directory: String)

(implicit renderer: Marshaller[DirectoryListing], settings: RoutingSettings,
resolver: ContentTypeResolver, refFactory: ActorRefFactory, log: LoggingContext): Route

getFromBrowseableDirectories Serves the content of the given directories as a file system browser, i.e. files are
sent and directories served as browsable listings.

Signature
def getFromBrowseableDirectories(directories: String*)

(implicit renderer: Marshaller[DirectoryListing], settings: RoutingSettings,
resolver: ContentTypeResolver, refFactory: ActorRefFactory, log: LoggingContext): Route

Description The getFromBrowseableDirectories is a combination of serving files from the specified di-
rectories (like getFromDirectory) and listing a browseable directory with listDirectoryContents. Nest-
ing this directive beneath get is not necessary as this directive will only respond to GET requests.

Use getFromBrowseableDirectory to serve only one directory. Use getFromDirectory if directory
browsing isn’t required.

getFromDirectory Completes GET requests with the content of a file underneath the given directory.

Signature
def getFromDirectory(directoryName: String)

(implicit settings: RoutingSettings, resolver: ContentTypeResolver,
refFactory: ActorRefFactory, log: LoggingContext): Route

Description The unmatchedPath of the RequestContext is first transformed by the given pathRewriter
function before being appended to the given directory name to build the final file name.

The actual I/O operation is running detached in a Future, so it doesn’t block the current thread. If the file cannot be
read the route rejects the request.

To serve a single file use getFromFile. To serve browsable directory listings use
getFromBrowseableDirectories. To serve files from a classpath directory use
getFromResourceDirectory instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

getFromFile Completes GET requests with the content of the given file.

Signature
def getFromFile(fileName: String)

(implicit settings: RoutingSettings, resolver: ContentTypeResolver, refFactory: ActorRefFactory): Route
def getFromFile(file: File)

(implicit settings: RoutingSettings, resolver: ContentTypeResolver, refFactory: ActorRefFactory): Route
def getFromFile(file: File, contentType: ContentType)

(implicit settings: RoutingSettings, refFactory: ActorRefFactory): Route

102 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description The actual I/O operation is running detached in a Future, so it doesn’t block the current thread (but
potentially some other thread !). If the file cannot be found or read the request is rejected.

To serve files from a directory use getFromDirectory, instead. To serve a file from a classpath resource use
getFromResource instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

getFromResource Completes GET requests with the content of the given classpath resource.

Signature
def getFromResource(resourceName: String)

(implicit resolver: ContentTypeResolver, refFactory: ActorRefFactory): Route
def getFromResource(resourceName: String, contentType: ContentType)

(implicit refFactory: ActorRefFactory): Route

Description The actual I/O operation is running detached in a Future, so it doesn’t block the current thread (but
potentially some other thread !). If the file cannot be found or read the request is rejected.

To serve files from a classpath directory use getFromResourceDirectory instead. To serve files from a filesys-
tem directory use getFromDirectory, instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

getFromResourceDirectory Completes GET requests with the content of the given classpath resource directory.

Signature
def getFromResourceDirectory(directoryName: String)

(implicit resolver: ContentTypeResolver, refFactory: ActorRefFactory, log: LoggingContext): Route

Description The actual I/O operation is running detached in a Future, so it doesn’t block the current thread (but
potentially some other thread !). If the file cannot be found or read the request is rejected.

To serve a single resource use getFromResource, instead. To server files from a filesystem directory use
getFromDirectory instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

listDirectoryContents Completes GET requests with a unified listing of the contents of all given directories. The
actual rendering of the directory contents is performed by the in-scope Marshaller[DirectoryListing].

Signature
def listDirectoryContents(directories: String*)

(implicit renderer: Marshaller[DirectoryListing], refFactory: ActorRefFactory,
log: LoggingContext): Route

5.7. spray-routing 103



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description The listDirectoryContents directive renders a response only for directories. To just
serve files use getFromDirectory. To serve files and provide a browseable directory listing use
getFromBrowsableDirectories instead.

The rendering can be overridden by providing a custom Marshaller[DirectoryListing].

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

respondWithLastModifiedHeader Adds a Last-Modified header to all HttpResponses from its inner Route.

Signature
def respondWithLastModifiedHeader(timestamp: Long): Directive0

FormFieldDirectives

formField An alias for formFields.

Signature
def formField(fdm: FieldDefMagnet): fdm.Out

Description See formFields.

formFields Extracts fields from POST requests generated by HTML forms.

Signature
def formFields(field: <FieldDef[T]>): Directive1[T]
def formFields(fields: <FieldDef[T_i]>*): Directive[T_0 :: ... T_i ... :: HNil]
def formFields(fields: <FieldDef[T_0]> :: ... <FieldDef[T_i]> ... :: HNil): Directive[T_0 :: ... T_i ... :: HNil]

The signature shown is simplified and written in pseudo-syntax, the real signature uses magnets. 1 The type
<FieldDef> doesn’t really exist but consists of the syntactic variants as shown in the description and the exam-
ples.

Description Form fields can be either extracted as a String or can be converted to another type. The parameter name
can be supplied either as a String or as a Symbol. Form field extraction can be modified to mark a field as required or
optional or to filter requests where a form field has a certain value:

"color" extract value of field “color” as String

"color".? extract optional value of field “color” as Option[String]

"color" ? "red" extract optional value of field “color” as String with default value "red"

"color" ! "blue" require value of field “color” to be "blue" and extract nothing

"amount".as[Int] extract value of field “amount” as Int, you need a matching Deserializer in scope for
that to work (see also Unmarshalling)

"amount".as(deserializer) extract value of field “amount” with an explicit Deserializer

1 See The Magnet Pattern for an explanation of magnet-based overloading.

104 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

You can use Case Class Extraction to group several extracted values together into a case-class instance.

Requests missing a required field or field value will be rejected with an appropriate rejection.

There’s also a singular version, formField. Query parameters can be handled in a similar way, see parameters.
If you want unified handling for both query parameters and form fields, see anyParams.

Unmarshalling Data POSTed from HTML forms is either of type application/x-www-form-urlencoded
or of type multipart/form-data. The value of an url-encoded field is a String while the value of a
multipart/form-data-encoded field is a “body part” containing an entity. This means that different kind of
deserializers are needed depending on what the Content-Type of the request is:

• A application/x-www-form-urlencoded encoded field needs an implicit
Deserializer[Option[String], T]

• A multipart/form-data encoded field needs an implicit Deserializer[Option[BodyPart],
T]

For common data-types, these implicits are predefined so that you usually don’t need to care. For custom data-types it
should usually suffice to create a Deserializer[String, T] if the value will be encoded as a String. This
should be valid for all values generated by HTML forms apart from file uploads.

Details It should only be necessary to read and understand this paragraph if you have very special needs and need to
process arbitrary forms, especially ones not generated by HTML forms.

The formFields directive contains this logic to find and decide how to deserialize a POSTed form field:

• It tries to find implicits of both types at the definition site if possible or otherwise at least one of both. If none is
available compilation will fail with an “implicit not found” error.

• Depending on the Content-Type of the incoming request it first tries the matching (see above) one if avail-
able.

• If only a Deserializer[Option[String], T] is available when a request of type
multipart/form-data is received, this deserializer will be tried to deserialize the body part for a
field if the entity is of type text/plain or unspecified.

• If only a Deserializer[Option[BodyPart], T] is available when a request of type
application/x-www-form-urlencoded is received, this deserializer will be tried to deserialize
the field value by packing the field value into a body part with an entity of type text/plain. Deserializing
will only succeed if the deserializer accepts entities of type text/plain.

If you need to handle encoded fields of a multipart/form-data-encoded request for a custom type, you therefore
need to provide a Deserializer[Option[BodyPart], T].

Example
val route =
formFields('color, 'age.as[Int]) { (color, age) =>
complete(s"The color is '$color' and the age ten years ago was ${age - 10}")

}

Post("/", FormData(Seq("color" -> "blue", "age" -> "68"))) ~> route ~> check {
responseAs[String] === "The color is 'blue' and the age ten years ago was 58"

}

Get("/") ~> sealRoute(route) ~> check {
status === StatusCodes.BadRequest

5.7. spray-routing 105

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

responseAs[String] === "Request is missing required form field 'color'"
}

For more examples about the way how fields can specified see the examples for the parameters directive.

FuturesDirectives

Future directives can be used to run inner routes once the provided Future[T] has been completed.

onComplete Evaluates its parameter of type Future[T], and once the Future has been completed, extracts its
result as a value of type Try[T] and passes it to the inner route.

Signature
def onComplete[T](future: Future[T])(implicit ec: ExecutionContext): Directive1[Try[T]]

The signature shown is simplified, the real signature uses magnets. 1

Description The evaluation of the inner route passed to a onComplete directive is deferred until the given future has
completed and provided with a extraction of type Try[T].

It is necessary to bring a ExecutionContext into implicit scope for this directive to work.

To handle the Failure case automatically and only work with the result value, use onSuccess. To complete with
a successful result automatically and just handle the failure result, use onFailure, instead.

Example
def divide(a: Int, b: Int): Future[Int] = Future {

a / b
}

val route =
path("divide" / IntNumber / IntNumber) { (a, b) =>
onComplete(divide(a, b)) {

case Success(value) => complete(s"The result was $value")
case Failure(ex) => complete(InternalServerError, s"An error occurred: ${ex.getMessage}")

}
}

Get("/divide/10/2") ~> route ~> check {
responseAs[String] === "The result was 5"

}

Get("/divide/10/0") ~> sealRoute(route) ~> check {
status === InternalServerError
responseAs[String] === "An error occurred: / by zero"

}

onSuccess Evaluates its parameter of type Future[T], and once the Future has been completed successfully,
extracts its result as a value of type T and passes it to the inner route.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

106 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Signature
def onSuccess(future: Future[T])(ec: ExecutionContext): Directive1[T]
def onSuccess(future: Future[L <: HList])(ec: ExecutionContext): Directive[L]

The signature shown is simplified, the real signature uses magnets. 1

Description The execution of the inner route passed to a onSuccess directive is deferred until the given future has
completed successfully, exposing the future’s value as a extraction of type T. If the future fails its failure throwable is
bubbled up to the nearest ExceptionHandler.

It is necessary to bring a ExecutionContext into implicit scope for this directive to work.

To handle the Failure case manually as well, use onComplete, instead.

Example
val route =
path("success") {
onSuccess(Future { "Ok" }) { extraction =>

complete(extraction)
}

} ~
path("failure") {
onSuccess(Future.failed[String](TestException)) { extraction =>

complete(extraction)
}

}

Get("/success") ~> route ~> check {
responseAs[String] === "Ok"

}

Get("/failure") ~> sealRoute(route) ~> check {
status === InternalServerError
responseAs[String] === "Unsuccessful future!"

}

onFailure Completes the request with the result of the computation given as argument of type Future[T] by
marshalling it with the implicitly given ToResponseMarshaller[T]. Runs the inner route if the Future com-
putation fails.

Signature
def onFailure(future: Future[T])(implicit m: ToResponseMarshaller[T], ec: ExecutionContext): Directive1[Throwable]

The signature shown is simplified, the real signature uses magnets. 1

Description If the future succeeds the request is completed using the values marshaller (this directive therefore
requires a marshaller for the future’s type to be implicitly available). The execution of the inner route passed to a
onFailure directive is deferred until the given future has completed with a failure, exposing the reason of failure as a
extraction of type Throwable.

1 See The Magnet Pattern for an explanation of magnet-based overloading.
1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 107



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

It is necessary to bring a ExecutionContext into implicit scope for this directive to work.

To handle the successful case manually as well, use the onComplete directive, instead.

Example
val route =
path("success") {
onFailure(Future { "Ok" }) { extraction =>

failWith(extraction) // not executed.
}

} ~
path("failure") {

onFailure(Future.failed[String](TestException)) { extraction =>
failWith(extraction)

}
}

Get("/success") ~> route ~> check {
responseAs[String] === "Ok"

}

Get("/failure") ~> sealRoute(route) ~> check {
status === InternalServerError
responseAs[String] === "Unsuccessful future!"

}

All future directives take a by-name parameter so that the parameter is not evaluated at route building time but only
when the request comes in.

HeaderDirectives

Header directives can be used to extract header values from the request. To change response headers use one of the
RespondWithDirectives.

headerValue Traverses the list of request headers with the specified function and extracts the first value the function
returns as Some(value).

Signature
def headerValue[T](f: HttpHeader Option[T]): Directive1[T]

Description The headerValue directive is a mixture of map and find on the list of request headers. The
specified function is called once for each header until the function returns Some(value). This value is ex-
tracted and presented to the inner route. If the function throws an exception the request is rejected with a
MalformedHeaderRejection. If the function returns None for every header the request is rejected as “Not-
Found”.

This directive is the basis for building other request header related directives. See headerValuePF for a nicer
syntactic alternative.

108 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Example
def extractHostPort: HttpHeader => Option[Int] = {
case h: `Host`=> Some(h.port)
case x => None

}

val route =
headerValue(extractHostPort) { port =>
complete(s"The port was $port")

}

Get("/") ~> Host("example.com", 5043) ~> route ~> check {
responseAs[String] === "The port was 5043"

}
Get("/") ~> sealRoute(route) ~> check {

status === NotFound
responseAs[String] === "The requested resource could not be found."

}

headerValueByName Extracts the value of the HTTP request header with the given name.

Signature
def headerValueByName(headerName: Symbol): Directive1[String]
def headerValueByName(headerName: String): Directive1[String]

Description The name can be given as a String or as a Symbol. If no header with a matching name is found the
request is rejected with a MissingHeaderRejection. If the header is expected to be missing in some cases or to
customize handling when the header is missing use the optionalHeaderValueByName directive instead.

Example
val route =
headerValueByName("X-User-Id") { userId =>
complete(s"The user is $userId")

}

Get("/") ~> RawHeader("X-User-Id", "Joe42") ~> route ~> check {
responseAs[String] === "The user is Joe42"

}

Get("/") ~> sealRoute(route) ~> check {
status === BadRequest
responseAs[String] === "Request is missing required HTTP header 'X-User-Id'"

}

headerValueByType Traverses the list of request headers and extracts the first header of the given type.

Signature
def headerValueByType[T <: HttpHeader: ClassTag](): Directive1[T]

The signature shown is simplified, the real signature uses magnets. 1

1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 109



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description The headerValueByType directive finds a header of the given type in the list of request header.
If no header of the given type is found the request is rejected with a MissingHeaderRejection. If the
header is expected to be missing in some cases or to customize handling when the header is missing use the
optionalHeaderValueByType directive instead.

Example
val route =
headerValueByType[Origin]() { origin
complete(s"The first origin was ${origin.originList.head}")

}

val originHeader = Origin(Seq(HttpOrigin("http://localhost:8080")))

// extract a header if the type is matching
Get("abc") ~> originHeader ~> route ~> check {

responseAs[String] === "The first origin was http://localhost:8080"
}

// reject a request if no header of the given type is present
Get("abc") ~> route ~> check {

rejection must beLike { case MissingHeaderRejection("Origin") ok }
}

headerValuePF Calls the specified partial function with the first request header the function is isDefinedAt and
extracts the result of calling the function.

Signature
def headerValuePF[T](pf: PartialFunction[HttpHeader, T]): Directive1[T]

Description The headerValuePF directive is an alternative syntax version of headerValue. If the function
throws an exception the request is rejected with a MalformedHeaderRejection. If the function is not defined
for any header the request is rejected as “NotFound”.

Example
def extractHostPort: PartialFunction[HttpHeader, Int] = {

case h: `Host`=> h.port
}

val route =
headerValuePF(extractHostPort) { port =>
complete(s"The port was $port")

}

Get("/") ~> Host("example.com", 5043) ~> route ~> check {
responseAs[String] === "The port was 5043"

}
Get("/") ~> sealRoute(route) ~> check {

status === NotFound
responseAs[String] === "The requested resource could not be found."

}

110 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

optionalHeaderValue Traverses the list of request headers with the specified function and extracts the first value
the function returns as Some(value).

Signature
def optionalHeaderValue[T](f: HttpHeader Option[T]): Directive1[Option[T]]

Description The optionalHeaderValue directive is similar to the headerValue directive but always ex-
tracts an Option value instead of rejecting the request if no matching header could be found.

optionalHeaderValueByName Optionally extracts the value of the HTTP request header with the given name.

Signature
def optionalHeaderValueByName(headerName: Symbol): Directive1[Option[String]]
def optionalHeaderValueByName(headerName: String): Directive1[Option[String]]

Description The optionalHeaderValueByName directive is similar to the headerValueByName directive
but always extracts an Option value instead of rejecting the request if no matching header could be found.

optionalHeaderValueByType Optionally extracts the value of the HTTP request header of the given type.

Signature
def optionalHeaderValueByType[T <: HttpHeader: ClassTag](): Directive1[Option[T]]

The signature shown is simplified, the real signature uses magnets. 1

Description The optionalHeaderValueByType directive is similar to the headerValueByType directive
but always extracts an Option value instead of rejecting the request if no matching header could be found.

Example
val route =
optionalHeaderValueByType[Origin]() {
case Some(origin) complete(s"The first origin was ${origin.originList.head}")
case None complete("No Origin header found.")

}

val originHeader = Origin(Seq(HttpOrigin("http://localhost:8080")))
// extract Some(header) if the type is matching
Get("abc") ~> originHeader ~> route ~> check {

responseAs[String] === "The first origin was http://localhost:8080"
}

// extract None if no header of the given type is present
Get("abc") ~> route ~> check {

responseAs[String] === "No Origin header found."
}

1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 111



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

optionalHeaderValuePF Calls the specified partial function with the first request header the function is
isDefinedAt and extracts the result of calling the function.

Signature
def optionalHeaderValuePF[T](pf: PartialFunction[HttpHeader, T]): Directive1[Option[T]]

Description The optionalHeaderValuePF directive is similar to the headerValuePF directive but always
extracts an Option value instead of rejecting the request if no matching header could be found.

HostDirectives

HostDirectives allow you to filter requests based on the hostname part of the Host header contained in incoming
requests as well as extracting its value for usage in inner routes.

host Filter requests matching conditions against the hostname part of the Host header value in the request.

Signature
def host(hostNames: String*): Directive0
def host(predicate: String Boolean): Directive0
def host(regex: Regex): Directive1[String]

Description The def host(hostNames: String*) overload rejects all requests with a hostname different
from the given ones.

The def host(predicate: String Boolean) overload rejects all requests for which the hostname does
not satisfy the given predicate.

The def host(regex: Regex) overload works a little bit different: it rejects all requests with a hostname that
doesn’t have a prefix matching the given regular expression and also extracts a String to its inner route following
this rules:

• For all matching requests the prefix string matching the regex is extracted and passed to the inner route.

• If the regex contains a capturing group only the string matched by this group is extracted.

• If the regex contains more than one capturing group an IllegalArgumentException is thrown.

Example Matching a list of hosts:

val route =
host("api.company.com", "rest.company.com") {
complete("Ok")

}

Get() ~> Host("rest.company.com") ~> route ~> check {
status === OK
responseAs[String] === "Ok"

}

Get() ~> Host("notallowed.company.com") ~> route ~> check {
handled must beFalse

}

112 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Making sure the host satisfies the given predicate

val shortOnly: String => Boolean = (hostname) => hostname.length < 10

val route =
host(shortOnly) {
complete("Ok")

}

Get() ~> Host("short.com") ~> route ~> check {
status === OK
responseAs[String] === "Ok"

}

Get() ~> Host("verylonghostname.com") ~> route ~> check {
handled must beFalse

}

Using a regular expressions:

val route =
host("api|rest".r) { prefix =>
complete(s"Extracted prefix: $prefix")

} ~
host("public.(my|your)company.com".r) { captured =>
complete(s"You came through $captured company")

}

Get() ~> Host("api.company.com") ~> route ~> check {
status === OK
responseAs[String] === "Extracted prefix: api"

}

Get() ~> Host("public.mycompany.com") ~> route ~> check {
status === OK
responseAs[String] === "You came through my company"

}

Beware that in the case of introducing multiple capturing groups in the regex such as in the case bellow, the directive
will fail at runtime, at the moment the route tree is evaluated for the first time. This might cause your http handler
actor to enter in a fail/restart loop depending on your supervision strategy.

{
host("server-([0-9]).company.(com|net|org)".r) { target =>
complete("Will never complete :'(")

}
} must throwAn[IllegalArgumentException]

hostName Extracts the hostname part of the Host header value in the request.

Signature
def hostName: Directive1[String]

Description Extract the hostname part of the Host request header and expose it as a String extraction to its inner
route.

5.7. spray-routing 113



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Example
val route =
hostName { hn =>
complete(s"Hostname: $hn")

}

Get() ~> Host("company.com", 9090) ~> route ~> check {
status === OK
responseAs[String] === "Hostname: company.com"

}

Marshalling Directives

Marshalling directives work in conjunction with spray.httpx.marshalling and
spray.httpx.unmarshalling to convert a request entity to a specific type or a type to a response. See
marshalling and unmarshalling for specific serialization (also known as pickling) guidance.

Marshalling directives usually rely on an in-scope implicit marshaller to handle conversion.

entity Unmarshalls the request entity to the given type and passes it to its inner Route. An umarshaller returns an
Either with Right(value) if successful or Left(exception) for a failure. The entity method will either
pass the value to the inner route or map the exception to a spray.routing.Rejection.

Signature
def entity[T](um: FromRequestUnmarshaller[T]): Directive1[T]

Description The entity directive works in conjuction with as and spray.httpx.unmarshalling to con-
vert some serialized “wire format” value into a higher-level object structure. The unmarshalling documentation ex-
plains this process in detail. This directive simplifies extraction and error handling to the specified type from the
request.

An unmarshaller will return a Left(exception) in the case of an error. This is converted to a
spray.routing.Rejection within the entity directive. The following table lists how exceptions are mapped
to rejections:

Left(exception) Rejection
ContentExpected RequestEntityExpectedRejection
UnsupportedContentTypeUnsupportedRequestContentTypeRejection, which lists the

supported types
MaformedContent MalformedRequestContentRejection, with an error message and

cause

Examples The following example uses spray-json to unmarshall a json request into a simple Person class. It
utilizes SprayJsonSupport via the PersonJsonSupport object as the in-scope unmarshaller.

case class Person(name: String, favoriteNumber: Int)

object PersonJsonSupport extends DefaultJsonProtocol with SprayJsonSupport {
implicit val PortofolioFormats = jsonFormat2(Person)

}

114 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

import PersonJsonSupport._

val route = post {
entity(as[Person]) { person =>
complete(s"Person: ${person.name} - favorite number: ${person.favoriteNumber}")

}
}

Post("/", HttpEntity(`application/json`, """{ "name": "Jane", "favoriteNumber" : 42 }""" )) ~>
route ~> check {
responseAs[String] === "Person: Jane - favorite number: 42"

}

produce Uses the marshaller for a given type to produce a completion function that is passed to its inner route. You
can use it to decouple marshaller resolution from request completion.

Signature
def produce[T](marshaller: ToResponseMarshaller[T]): Directive[(T Unit) :: HNil]

Description The produce directive works in conjuction with instanceOf and
spray.httpx.marshalling to convert higher-level (object) structure into some lower-level serialized
“wire format”. The marshalling documentation explains this process in detail. This directive simplifies exposing
types to clients via a route while providing some form of access to the current context.

produce is similar to handleWith. The main difference is with produce you must eventually call the completion
function generated by produce. handleWith will automatically call complete when the handleWith function
returns.

Examples The following example uses spray-json to marshall a simple Person class to a json response. It
utilizes SprayJsonSupport via the PersonJsonSupport object as the in-scope unmarshaller.

object PersonJsonSupport extends DefaultJsonProtocol with SprayJsonSupport {
implicit val PortofolioFormats = jsonFormat2(Person)

}

case class Person(name: String, favoriteNumber: Int)

The findPerson takes an argument of type Person => Unit which is generated by the produce call. We can
handle any logic we want in findPerson and call our completion function to complete the request.

import PersonJsonSupport._

val findPerson = (f: Person => Unit) => {

//... some processing logic...

//complete the request
f(Person("Jane", 42))

}

val route = get {
produce(instanceOf[Person]) { completionFunction => ctx => findPerson(completionFunction) }

}

5.7. spray-routing 115



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/") ~> route ~> check {
mediaType === `application/json`
responseAs[String] must contain(""""name": "Jane"""")
responseAs[String] must contain(""""favoriteNumber": 42""")

}

handleWith Completes the request using the given function. The input to the function is produced with the in-scope
entity unmarshaller and the result value of the function is marshalled with the in-scope marshaller. handleWith can
be a convenient method combining entity with complete.

Signature
def handleWith[A, B](f: A B)(implicit um: FromRequestUnmarshaller[A], m: ToResponseMarshaller[B]): Route

Description The handleWith directive is used when you want to handle a route with a given function of type A
B. handleWith will use both an in-scope unmarshaller to convert a request into type A and an in-scope marshaller
to convert type B into a response. This is helpful when your core business logic resides in some other class or you
want your business logic to be independent of Spray. You can use handleWith to “hand off” processing to a given
function without requiring any spray-specific functionality.

handleWith is similar to produce. The main difference is handleWith automatically calls complete when
the function passed to handleWith returns. Using produce you must explicity call the completion function passed
from the produce function.

See marshalling and unmarshalling for guidance on marshalling entities with Spray.

Examples The following example uses an updatePerson function with a Person case class as an input and
output. We plug this function into our route using handleWith.

case class Person(name: String, favoriteNumber: Int)

import PersonJsonSupport._

val updatePerson = (person: Person) => {

//... some processing logic...

//return the person
person

}

val route = post {
handleWith(updatePerson)

}

Post("/", HttpEntity(`application/json`, """{ "name": "Jane", "favoriteNumber" : 42 }""" )) ~>
route ~> check {
mediaType === `application/json`
responseAs[String] must contain(""""name": "Jane"""")
responseAs[String] must contain(""""favoriteNumber": 42""")

}

The PersonJsonSupport object handles both marshalling and unmarshalling of the Person case class.

116 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

object PersonJsonSupport extends DefaultJsonProtocol with SprayJsonSupport {
implicit val PortofolioFormats = jsonFormat2(Person)

}

Understanding Specific Marshalling Directives

direc-
tive

behavior

entity Unmarshalls the request entity to the given type and passes it to its inner route. Used in conjection with
as to convert requests to objects.

produce Uses a marshaller for a given type to produce a completion function for an inner route. Used in
conjuction with instanceOf to format responses.

handle-
With

Completes a request with a given function, using an in-scope unmarshaller for an input and in-scope
marshaller for the output.

MethodDirectives

delete Matches requests with HTTP method DELETE.

Signature
def delete: Directive0

Description This directive filters an incoming request by its HTTP method. Only requests with method DELETE
are passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = Directives.delete { complete("This is a DELETE request.") }

Delete("/") ~> route ~> check {
responseAs[String] === "This is a DELETE request."

}

get Matches requests with HTTP method GET.

Signature
def get: Directive0

Description This directive filters the incoming request by its HTTP method. Only requests with method GET are
passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = get { complete("This is a GET request.") }

Get("/") ~> route ~> check {
responseAs[String] === "This is a GET request."

}

5.7. spray-routing 117



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

head Matches requests with HTTP method HEAD.

Signature
def head: Directive0

Description This directive filters the incoming request by its HTTP method. Only requests with method HEAD are
passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Note: By default, spray-can handles HEAD-requests transparently by dispatching a GET-request to the handler and
stripping of the result body. See the spray.can.server.transparent-head-requests setting for how to
disable this behavior.

Example
val route = head { complete("This is a HEAD request.") }

Head("/") ~> route ~> check {
responseAs[String] === "This is a HEAD request."

}

method Matches HTTP requests based on their method.

Signature
/**
* Rejects all requests whose HTTP method does not match the given one.

*/
def method(httpMethod: HttpMethod): Directive0 =

extract(_.request.method).flatMap[HNil] {
case `httpMethod` pass
case _ reject(MethodRejection(httpMethod))

} & cancelAllRejections(ofType[MethodRejection])

Description This directive filters the incoming request by its HTTP method. Only requests with the specified method
are passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = method(HttpMethods.PUT) { complete("This is a PUT request.") }

Put("/", "put content") ~> route ~> check {
responseAs[String] === "This is a PUT request."

}

Get("/") ~> sealRoute(route) ~> check {
status === StatusCodes.MethodNotAllowed
responseAs[String] === "HTTP method not allowed, supported methods: PUT"

}

118 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

options Matches requests with HTTP method OPTIONS.

Signature
def options: Directive0

Description This directive filters the incoming request by its HTTP method. Only requests with method OPTIONS
are passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = options { complete("This is an OPTIONS request.") }

Options("/") ~> route ~> check {
responseAs[String] === "This is an OPTIONS request."

}

overrideMethodWithParameter Changes the HTTP method of the request to the value of the specified query string
parameter. If the query string parameter is not specified this directive has no effect. If the query string is specified as
something that is not a HTTP method, then this directive completes the request with a 501 Not Implemented response.

This directive is useful for:

• Use in combination with JSONP (JSONP only supports GET)

• Supporting older browsers that lack support for certain HTTP methods. E.g. IE8 does not support PATCH

patch Matches requests with HTTP method PATCH.

Signature
def patch: Directive0

Description This directive filters the incoming request by its HTTP method. Only requests with method PATCH
are passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = patch { complete("This is a PATCH request.") }

Patch("/", "patch content") ~> route ~> check {
responseAs[String] === "This is a PATCH request."

}

post Matches requests with HTTP method POST.

Signature
def post: Directive0

5.7. spray-routing 119



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description This directive filters the incoming request by its HTTP method. Only requests with method POST are
passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = post { complete("This is a POST request.") }

Post("/", "post content") ~> route ~> check {
responseAs[String] === "This is a POST request."

}

put Matches requests with HTTP method PUT.

Signature
def put: Directive0

Description This directive filters the incoming request by its HTTP method. Only requests with method PUT are
passed on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405
Method Not Allowed response by the default RejectionHandler.

Example
val route = put { complete("This is a PUT request.") }

Put("/", "put content") ~> route ~> check {
responseAs[String] === "This is a PUT request."

}

MiscDirectives

cancelAllRejections Cancels all rejections created by the inner route for which the condition argument function
returns true.

Signature
def cancelAllRejections(cancelFilter: Rejection Boolean): Directive0

Description Use the cancelRejection to cancel a specific rejection instance.

Example
def isMethodRejection: Rejection => Boolean = {

case MethodRejection(_) => true
case _ => false

}

val route =
cancelAllRejections(isMethodRejection) {
post {

complete("Result")

120 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

}
}

Get("/") ~> route ~> check {
rejections === Nil
handled === false

}

cancelRejection Cancels a rejection that is equal to the given one.

Signature
def cancelRejection(rejection: Rejection): Directive0

Description Use cancelAllRejections to cancel rejections by predicate.

Example
val route =
cancelRejection(MethodRejection(HttpMethods.POST)) {
post {

complete("Result")
}

}

Get("/") ~> route ~> check {
rejections === Nil
handled === false

}

clientIP Provides the value of X-Forwarded-For, Remote-Address, or X-Real-IP headers as an instance
of HttpIp.

Signature
def clientIP: Directive1[RemoteAddress]

Description spray-can and spray-servlet adds the Remote-Address header to every request
automatically if the respective setting spray.can.server.remote-address-header or
spray.servlet.remote-address-header is set to on. Per default it is set to off.

Example
val route = clientIP { ip =>
complete("Client's ip is " + ip.toOption.map(_.getHostAddress).getOrElse("unknown"))

}

Get("/").withHeaders(`Remote-Address`("192.168.3.12")) ~> route ~> check {
responseAs[String] === "Client's ip is 192.168.3.12"

}

5.7. spray-routing 121



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

jsonpWithParameter Wraps a response of type application/json with an invocation to a callback function
which name is given as an argument. The new type of the response is application/javascript.

Signature
def jsonpWithParameter(parameterName: String): Directive0

Description Find more information about JSONP in Wikipedia. Note that JSONP is not considered the solution of
choice for many reasons. Be sure to understand its drawbacks and security implications.

Example
case class Test(abc: Int)
object TestProtocol {

import spray.json.DefaultJsonProtocol._
implicit val testFormat = jsonFormat(Test, "abc")

}
val route =
jsonpWithParameter("jsonp") {
import TestProtocol._
import spray.httpx.SprayJsonSupport._
complete(Test(456))

}

Get("/?jsonp=result") ~> route ~> check {
responseAs[String] ===
"""result({

| "abc": 456
|})""".stripMarginWithNewline("\n")

contentType === MediaTypes.`application/javascript`.withCharset(HttpCharsets.`UTF-8`)
}
Get("/") ~> route ~> check {

responseAs[String] ===
"""{

| "abc": 456
|}""".stripMarginWithNewline("\n")

contentType === ContentTypes.`application/json`
}

rejectEmptyResponse Replaces a response with no content with an empty rejection.

Signature
def rejectEmptyResponse: Directive0

Description The rejectEmptyResponse directive is mostly used with marshalling Option[T] instances. The
value None is usually marshalled to an empty but successful result. In many cases None should instead be handled
as 404 Not Found which is the effect of using rejectEmptyResponse.

Example
val route = rejectEmptyResponse {
path("even" / IntNumber) { i =>
complete {

122 Chapter 5. Documentation

http://en.wikipedia.org/wiki/JSONP


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

// returns Some(evenNumberDescription) or None
Option(i).filter(_ % 2 == 0).map { num =>
s"Number $num is even."

}
}

}
}

Get("/even/23") ~> sealRoute(route) ~> check {
status === StatusCodes.NotFound

}
Get("/even/28") ~> route ~> check {

responseAs[String] === "Number 28 is even."
}

requestEntityEmpty A filter that checks if the request entity is empty and only then passes processing to the inner
route. Otherwise, the request is rejected.

Signature
def requestEntityEmpty: Directive0

Description The opposite filter is available as requestEntityPresent.

Example
val route =
requestEntityEmpty {
complete("request entity empty")

} ~
requestEntityPresent {
complete("request entity present")

}

Post("/", "text") ~> sealRoute(route) ~> check {
responseAs[String] === "request entity present"

}
Post("/") ~> route ~> check {
responseAs[String] === "request entity empty"

}

requestEntityPresent A simple filter that checks if the request entity is present and only then passes processing to
the inner route. Otherwise, the request is rejected.

Signature
def requestEntityPresent: Directive0

Description The opposite filter is available as requestEntityEmpty.

5.7. spray-routing 123



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Example
val route =
requestEntityEmpty {
complete("request entity empty")

} ~
requestEntityPresent {
complete("request entity present")

}

Post("/", "text") ~> sealRoute(route) ~> check {
responseAs[String] === "request entity present"

}
Post("/") ~> route ~> check {
responseAs[String] === "request entity empty"

}

requestInstance Extracts the complete HttpRequest instance.

Signature
def requestInstance: Directive1[HttpRequest]

Description Use requestUri to extract just the complete URI of the request. Usually there’s little use of extract-
ing the complete request because extracting of most of the aspects of HttpRequests is handled by specialized directives.
See Directives filtering or extracting from the request.

Example
val route =
requestInstance { request =>
complete(s"Request method is ${request.method} and length is ${request.entity.data.length}")

}

Post("/", "text") ~> route ~> check {
responseAs[String] === "Request method is POST and length is 4"

}
Get("/") ~> route ~> check {

responseAs[String] === "Request method is GET and length is 0"
}

requestUri Access the full URI of the request.

Signature
def requestUri: Directive1[Uri]

Description Use SchemeDirectives, HostDirectives, PathDirectives, and ParameterDirectives for more targeted ac-
cess to parts of the URI.

Example

124 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

val route =
requestUri { uri =>
complete(s"Full URI: $uri")

}

Get("/") ~> route ~> check {
// tests are executed with the host assumed to be "example.com"
responseAs[String] === "Full URI: http://example.com/"

}
Get("/test") ~> route ~> check {

responseAs[String] === "Full URI: http://example.com/test"
}

rewriteUnmatchedPath Transforms the unmatchedPath field of the request context for inner routes.

Signature
def rewriteUnmatchedPath(f: Uri.Path Uri.Path): Directive0

Description The rewriteUnmatchedPath directive is used as a building block for writing Custom Directives.
You can use it for implementing custom path matching directives.

Use unmatchedPath for extracting the current value of the unmatched path.

Example
def ignore456(path: Path) = path match {
case s@Path.Segment(head, tail) if head.startsWith("456") =>
val newHead = head.drop(3)
if (newHead.isEmpty) tail
else s.copy(head = head.drop(3))

case _ => path
}
val ignoring456 = rewriteUnmatchedPath(ignore456)

val route =
pathPrefix("123") {
ignoring456 {

path("abc") {
complete(s"Content")

}
}

}

Get("/123/abc") ~> route ~> check {
responseAs[String] === "Content"

}
Get("/123456/abc") ~> route ~> check {

responseAs[String] === "Content"
}

unmatchedPath Extracts the unmatched path from the request context.

5.7. spray-routing 125



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Signature
def unmatchedPath: Directive1[Uri.Path]

Description The unmatchedPath directive extracts the remaining path that was not yet matched by any of the
PathDirectives (or any custom ones that change the unmatched path field of the request context). You can use it for
building directives that handle complete suffixes of paths (like the getFromDirectory directives and similar ones).

Use rewriteUnmatchedPath to change the value of the unmatched path.

Example
val route =
pathPrefix("abc") {
unmatchedPath { remaining =>

complete(s"Unmatched: '$remaining'")
}

}

Get("/abc") ~> route ~> check {
responseAs[String] === "Unmatched: ''"

}
Get("/abc/456") ~> route ~> check {

responseAs[String] === "Unmatched: '/456'"
}

validate Checks an arbitrary condition and passes control to the inner route if it returns true. Otherwise, rejects
the request with a ValidationRejection containing the given error message.

Signature
def validate(check: Boolean, errorMsg: String): Directive0

Example
val route =
requestUri { uri =>
validate(uri.path.toString.size < 5, s"Path too long: '${uri.path.toString}'") {

complete(s"Full URI: $uri")
}

}

Get("/234") ~> route ~> check {
responseAs[String] === "Full URI: http://example.com/234"

}
Get("/abcdefghijkl") ~> route ~> check {

rejection === ValidationRejection("Path too long: '/abcdefghijkl'", None)
}

ParameterDirectives

parameter An alias for parameters.

126 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Signature
def parameter(pdm: ParamDefMagnet): pdm.Out

Description See parameters

Example
val route =
parameter('color) { color =>
complete(s"The color is '$color'")

}

Get("/?color=blue") ~> route ~> check {
responseAs[String] === "The color is 'blue'"

}

Get("/") ~> sealRoute(route) ~> check {
status === StatusCodes.NotFound
responseAs[String] === "Request is missing required query parameter 'color'"

}

parameterMap Extracts all parameters at once as a Map[String, String] mapping parameter names to pa-
rameter values.

Signature
def parameterMap: Directive[Map[String, String] :: HNil]

Description If a query contains a parameter value several times, the map will contain the last one.

See When to use which parameter directive? for other choices.

Example
val route =
parameterMap { params =>
def paramString(param: (String, String)): String = s"""${param._1} = '${param._2}'"""
complete(s"The parameters are ${params.map(paramString).mkString(", ")}")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "The parameters are color = 'blue', count = '42'"

}
Get("/?x=1&x=2") ~> route ~> check {

responseAs[String] === "The parameters are x = '2'"
}

parameterMultiMap Extracts all parameters at once as a multi-map of type Map[String, List[String]
mapping a parameter name to a list of all its values.

Signature

5.7. spray-routing 127



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

def parameterMultiMap: Directive[Map[String, List[String]] :: HNil]

Description This directive can be used if parameters can occur several times. The order of values is not specified.

See When to use which parameter directive? for other choices.

Example
val route =
parameterMultiMap { params =>
complete(s"There are parameters ${params.map(x => x._1+" -> "+x._2.size).mkString(", ")}")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "There are parameters color -> 1, count -> 1"

}
Get("/?x=23&x=42") ~> route ~> check {

responseAs[String] === "There are parameters x -> 2"
}

parameters The parameters directive filters on the existence of several query parameters and extract their values.

Signature
def parameters(param: <ParamDef[T]>): Directive1[T]
def parameters(params: <ParamDef[T_i]>*): Directive[T_0 :: ... T_i ... :: HNil]
def parameters(params: <ParamDef[T_0]> :: ... <ParamDef[T_i]> ... :: HNil): Directive[T_0 :: ... T_i ... :: HNil]

The signature shown is simplified and written in pseudo-syntax, the real signature uses magnets. 1 The type
<ParamDef> doesn’t really exist but consists of the syntactic variants as shown in the description and the exam-
ples.

Description Query parameters can be either extracted as a String or can be converted to another type. The parameter
name can be supplied either as a String or as a Symbol. Parameter extraction can be modified to mark a query parameter
as required or optional or to filter requests where a parameter has a certain value:

"color" extract value of parameter “color” as String

"color".? extract optional value of parameter “color” as Option[String]

"color" ? "red" extract optional value of parameter “color” as String with default value "red"

"color" ! "blue" require value of parameter “color” to be "blue" and extract nothing

"amount".as[Int] extract value of parameter “amount” as Int, you need a matching Deserializer in scope
for that to work (see also Unmarshalling)

"amount".as(deserializer) extract value of parameter “amount” with an explicit Deserializer

You can use Case Class Extraction to group several extracted values together into a case-class instance.

Requests missing a required parameter or parameter value will be rejected with an appropriate rejection.

There’s also a singular version, parameter. Form fields can be handled in a similar way, see formFields. If you
want unified handling for both query parameters and form fields, see anyParams.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

128 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Examples

Required parameter
val route =
parameters('color, 'backgroundColor) { (color, backgroundColor) =>
complete(s"The color is '$color' and the background is '$backgroundColor'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> sealRoute(route) ~> check {

status === StatusCodes.NotFound
responseAs[String] === "Request is missing required query parameter 'backgroundColor'"

}

Optional parameter
val route =
parameters('color, 'backgroundColor.?) { (color, backgroundColor) =>
val backgroundStr = backgroundColor.getOrElse("<undefined>")
complete(s"The color is '$color' and the background is '$backgroundStr'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> route ~> check {

responseAs[String] === "The color is 'blue' and the background is '<undefined>'"
}
val route =

parameters('color, 'backgroundColor ? "white") { (color, backgroundColor) =>
complete(s"The color is '$color' and the background is '$backgroundColor'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> route ~> check {

responseAs[String] === "The color is 'blue' and the background is 'white'"
}

Optional parameter with default value
val route =
parameters('color, 'backgroundColor ? "white") { (color, backgroundColor) =>
complete(s"The color is '$color' and the background is '$backgroundColor'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> route ~> check {

responseAs[String] === "The color is 'blue' and the background is 'white'"
}

5.7. spray-routing 129



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Parameter with required value
val route =
parameters('color, 'action ! "true") { (color) =>
complete(s"The color is '$color'.")

}

Get("/?color=blue&action=true") ~> route ~> check {
responseAs[String] === "The color is 'blue'."

}

Get("/?color=blue&action=false") ~> sealRoute(route) ~> check {
status === StatusCodes.NotFound
responseAs[String] === "The requested resource could not be found."

}

Deserialized parameter
val route =
parameters('color, 'count.as[Int]) { (color, count) =>
complete(s"The color is '$color' and you have $count of it.")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "The color is 'blue' and you have 42 of it."

}

Get("/?color=blue&count=blub") ~> sealRoute(route) ~> check {
status === StatusCodes.BadRequest
responseAs[String] === "The query parameter 'count' was malformed:\n'blub' is not a valid 32-bit integer value"

}

parameterSeq Extracts all parameters at once in the original order as (name, value) tuples of type (String,
String).

Signature
def parameterSeq: Directive[Seq[(String, String)] :: HNil]

Description This directive can be used if the exact order of parameters is important or if parameters can occur
several times.

See When to use which parameter directive? for other choices.

Example
val route =
parameterSeq { params =>
def paramString(param: (String, String)): String = s"""${param._1} = '${param._2}'"""
complete(s"The parameters are ${params.map(paramString).mkString(", ")}")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "The parameters are color = 'blue', count = '42'"

}
Get("/?x=1&x=2") ~> route ~> check {

130 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

responseAs[String] === "The parameters are x = '1', x = '2'"
}

When to use which parameter directive? Usually, you want to use the high-level parameters directive. When you
need more low-level access you can use the table below to decide which directive to use which shows properties of
different parameter directives.

directive level ordering multi
parameter high no no
parameters high no no
parameterMap low no no
parameterMultiMap low no yes
parameterSeq low yes yes

level high-level parameter directives extract subset of all parameters by name and allow conversions and automatically
report errors if expectations are not met, low-level directives give you all parameters at once, leaving all further
processing to you

ordering original ordering from request URL is preserved

multi multiple values per parameter name are possible

PathDirectives

path Matches the complete unmatched path of the RequestContext against the given PathMatcher, poten-
tially extracts one or more values (depending on the type of the argument).

Signature
def path[L <: HList](pm: PathMatcher[L]): Directive[L]

Description This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by
other potentially existing pathPrefix directives on higher levels of the routing structure. Its one parameter is usually an
expression evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to the rawPathPrefix or rawPathPrefixTest directives path automatically adds a leading slash to its
PathMatcher argument, you therefore don’t have to start your matching expression with an explicit slash.

The path directive attempts to match the complete remaining path, not just a prefix. If you only want to match a path
prefix and then delegate further filtering to a lower level in your routing structure use the pathPrefix directive instead.
As a consequence it doesn’t make sense to nest a path or pathPrefix directive underneath another path directive,
as there is no way that they will ever match (since the unmatched path underneath a path directive will always be
empty).

Depending on the type of its PathMatcher argument the path directive extracts zero or more values from the URI.
If the match fails the request is rejected with an empty rejection set.

Example
val route =
path("foo") {
complete("/foo")

} ~
path("foo" / "bar") {
complete("/foo/bar")

5.7. spray-routing 131



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

} ~
pathPrefix("ball") {
pathEnd {

complete("/ball")
} ~
path(IntNumber) { int =>
complete(if (int % 2 == 0) "even ball" else "odd ball")

}
}

Get("/") ~> route ~> check {
handled === false

}

Get("/foo") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/bar") ~> route ~> check {
responseAs[String] === "/foo/bar"

}

Get("/ball/1337") ~> route ~> check {
responseAs[String] === "odd ball"

}

pathEnd Only passes the request to its inner route if the unmatched path of the RequestContext is empty, i.e.
the request path has been fully matched by a higher-level path or pathPrefix directive.

Signature
def pathEnd: Directive0

Description This directive is a simple alias for rawPathPrefix(PathEnd) and is mostly used on an inner-level
to discriminate “path already fully matched” from other alternatives (see the example below).

Example
val route =
pathPrefix("foo") {
pathEnd {

complete("/foo")
} ~
path("bar") {

complete("/foo/bar")
}

}

Get("/foo") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/") ~> route ~> check {
handled === false

}

132 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/foo/bar") ~> route ~> check {
responseAs[String] === "/foo/bar"

}

pathEndOrSingleSlash Only passes the request to its inner route if the unmatched path of the RequestContext
is either empty or contains only one single slash.

Signature
def pathEndOrSingleSlash: Directive0

Description This directive is a simple alias for rawPathPrefix(Slash.? ~ PathEnd) and is mostly used
on an inner-level to discriminate “path already fully matched” from other alternatives (see the example below).

It is equivalent to pathEnd | pathSingleSlash but slightly more efficient.

Example
val route =
pathPrefix("foo") {
pathEndOrSingleSlash {

complete("/foo")
} ~
path("bar") {

complete("/foo/bar")
}

}

Get("/foo") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/bar") ~> route ~> check {
responseAs[String] === "/foo/bar"

}

pathPrefix Matches and consumes a prefix of the unmatched path of the RequestContext against the given
PathMatcher, potentially extracts one or more values (depending on the type of the argument).

Signature
def pathPrefix[L <: HList](pm: PathMatcher[L]): Directive[L]

Description This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by
other potentially existing pathPrefix or rawPathPrefix directives on higher levels of the routing structure. Its one
parameter is usually an expression evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to its rawPathPrefix counterpart pathPrefix automatically adds a leading slash to its PathMatcher
argument, you therefore don’t have to start your matching expression with an explicit slash.

5.7. spray-routing 133



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Depending on the type of its PathMatcher argument the pathPrefix directive extracts zero or more values from
the URI. If the match fails the request is rejected with an empty rejection set.

Example
val route =
pathPrefix("ball") {
pathEnd {

complete("/ball")
} ~
path(IntNumber) { int =>

complete(if (int % 2 == 0) "even ball" else "odd ball")
}

}

Get("/") ~> route ~> check {
handled === false

}

Get("/ball") ~> route ~> check {
responseAs[String] === "/ball"

}

Get("/ball/1337") ~> route ~> check {
responseAs[String] === "odd ball"

}

pathPrefixTest Checks whether the unmatched path of the RequestContext has a prefix matched by the given
PathMatcher. Potentially extracts one or more values (depending on the type of the argument) but doesn’t consume
its match from the unmatched path.

Signature
def pathPrefixTest[L <: HList](pm: PathMatcher[L]): Directive[L]

Description This directive is very similar to the pathPrefix directive with the one difference that the path prefix it
matched (if it matched) is not consumed. The unmatched path of the RequestContext is therefore left as is even
in the case that the directive successfully matched and the request is passed on to its inner route.

For more info on how to create a PathMatcher see The PathMatcher DSL.

As opposed to its rawPathPrefixTest counterpart pathPrefixTest automatically adds a leading slash to its
PathMatcher argument, you therefore don’t have to start your matching expression with an explicit slash.

Depending on the type of its PathMatcher argument the pathPrefixTest directive extracts zero or more values
from the URI. If the match fails the request is rejected with an empty rejection set.

Example
val completeWithUnmatchedPath =

unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefixTest("foo" | "bar") {

134 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

pathPrefix("foo") { completeWithUnmatchedPath } ~
pathPrefix("bar") { completeWithUnmatchedPath }

}

Get("/foo/doo") ~> route ~> check {
responseAs[String] === "/doo"

}

Get("/bar/yes") ~> route ~> check {
responseAs[String] === "/yes"

}

pathSingleSlash Only passes the request to its inner route if the unmatched path of the RequestContext contains
exactly one single slash.

Signature
def pathSingleSlash: Directive0

Description This directive is a simple alias for pathPrefix(PathEnd) and is mostly used for matching requests
to the root URI (/) on an inner-level to discriminate “all path segments matched” from other alternatives (see the
example below).

Example
val route =
pathSingleSlash {
complete("root")

} ~
pathPrefix("ball") {
pathSingleSlash {

complete("/ball/")
} ~
path(IntNumber) { int =>

complete(if (int % 2 == 0) "even ball" else "odd ball")
}

}

Get("/") ~> route ~> check {
responseAs[String] === "root"

}

Get("/ball") ~> route ~> check {
handled === false

}

Get("/ball/") ~> route ~> check {
responseAs[String] === "/ball/"

}

Get("/ball/1337") ~> route ~> check {
responseAs[String] === "odd ball"

}

5.7. spray-routing 135



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

pathSuffix Matches and consumes a suffix of the unmatched path of the RequestContext against the given
PathMatcher, potentially extracts one or more values (depending on the type of the argument).

Signature
def pathSuffix[L <: HList](pm: PathMatcher[L]): Directive[L]

Description This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by
other potentially existing path matching directives on higher levels of the routing structure. Its one parameter is usually
an expression evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to pathPrefix this directive matches and consumes the unmatched path from the right, i.e. the end.

Caution: For efficiency reasons, the given PathMatcher must match the desired suffix in reversed-segment
order, i.e. pathSuffix("baz" / "bar") would match /foo/bar/baz! The order within a segment
match is not reversed.

Depending on the type of its PathMatcher argument the pathPrefix directive extracts zero or more values from
the URI. If the match fails the request is rejected with an empty rejection set.

Example
val completeWithUnmatchedPath =

unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefix("start") {
pathSuffix("end") {

completeWithUnmatchedPath
} ~
pathSuffix("foo" / "bar" ~ "baz") {

completeWithUnmatchedPath
}

}

Get("/start/middle/end") ~> route ~> check {
responseAs[String] === "/middle/"

}

Get("/start/something/barbaz/foo") ~> route ~> check {
responseAs[String] === "/something/"

}

pathSuffixTest Checks whether the unmatched path of the RequestContext has a suffix matched by the given
PathMatcher. Potentially extracts one or more values (depending on the type of the argument) but doesn’t consume
its match from the unmatched path.

Signature
def pathSuffixTest[L <: HList](pm: PathMatcher[L]): Directive[L]

136 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description This directive is very similar to the pathSuffix directive with the one difference that the path suffix it
matched (if it matched) is not consumed. The unmatched path of the RequestContext is therefore left as is even
in the case that the directive successfully matched and the request is passed on to its inner route.

As opposed to pathPrefixTest this directive matches and consumes the unmatched path from the right, i.e. the end.

Caution: For efficiency reasons, the given PathMatcher must match the desired suffix in reversed-segment
order, i.e. pathSuffixTest("baz" / "bar")would match /foo/bar/baz! The order within a segment
match is not reversed.

Depending on the type of its PathMatcher argument the pathSuffixTest directive extracts zero or more values
from the URI. If the match fails the request is rejected with an empty rejection set.

Example
val completeWithUnmatchedPath =

unmatchedPath { p =>
complete(p.toString)

}

val route =
pathSuffixTest(Slash) {
complete("slashed")

} ~
complete("unslashed")

Get("/foo/") ~> route ~> check {
responseAs[String] === "slashed"

}
Get("/foo") ~> route ~> check {

responseAs[String] === "unslashed"
}

rawPathPrefix Matches and consumes a prefix of the unmatched path of the RequestContext against the given
PathMatcher, potentially extracts one or more values (depending on the type of the argument).

Signature
def rawPathPrefix[L <: HList](pm: PathMatcher[L]): Directive[L]

Description This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by
other potentially existing rawPathPrefix or pathPrefix directives on higher levels of the routing structure. Its one
parameter is usually an expression evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to its pathPrefix counterpart rawPathPrefix does not automatically add a leading slash to its
PathMatcher argument. Rather its PathMatcher argument is applied to the unmatched path as is.

Depending on the type of its PathMatcher argument the rawPathPrefix directive extracts zero or more values
from the URI. If the match fails the request is rejected with an empty rejection set.

Example
val completeWithUnmatchedPath =

unmatchedPath { p =>
complete(p.toString)

}

5.7. spray-routing 137



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

val route =
pathPrefix("foo") {
rawPathPrefix("bar") { completeWithUnmatchedPath } ~
rawPathPrefix("doo") { completeWithUnmatchedPath }

}

Get("/foobar/baz") ~> route ~> check {
responseAs[String] === "/baz"

}

Get("/foodoo/baz") ~> route ~> check {
responseAs[String] === "/baz"

}

rawPathPrefixTest Checks whether the unmatched path of the RequestContext has a prefix matched by the
given PathMatcher. Potentially extracts one or more values (depending on the type of the argument) but doesn’t
consume its match from the unmatched path.

Signature
def rawPathPrefixTest[L <: HList](pm: PathMatcher[L]): Directive[L]

Description This directive is very similar to the pathPrefix directive with the one difference that the path prefix it
matched (if it matched) is not consumed. The unmatched path of the RequestContext is therefore left as is even
in the case that the directive successfully matched and the request is passed on to its inner route.

For more info on how to create a PathMatcher see The PathMatcher DSL.

As opposed to its pathPrefixTest counterpart rawPathPrefixTest does not automatically add a leading slash to
its PathMatcher argument. Rather its PathMatcher argument is applied to the unmatched path as is.

Depending on the type of its PathMatcher argument the rawPathPrefixTest directive extracts zero or more
values from the URI. If the match fails the request is rejected with an empty rejection set.

Example
val completeWithUnmatchedPath =

unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefix("foo") {
rawPathPrefixTest("bar") {

completeWithUnmatchedPath
}

}

Get("/foobar") ~> route ~> check {
responseAs[String] === "bar"

}

Get("/foobaz") ~> route ~> check {
handled === false

}

138 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The PathMatcher DSL For being able to work with the PathDirectives effectively you should have some under-
standing of the PathMatcher mini-DSL that spray-routing provides for elegantly defining URI matching behavior.

Overview When a request (or rather the respective RequestContext instance) enters the route structure it has an
“unmatched path” that is identical to the request.uri.path. As it descends the routing tree and passes through
one or more pathPrefix/path directives the “unmatched path” progressively gets “eaten into” from the left until, in
most cases, it eventually has been consumed completely.

What exactly gets matched and consumed as well as extracted from the unmatched path in each directive is defined
with the patch matching DSL, which is built around these types:

trait PathMatcher[L <: HList]
type PathMatcher0 = PathMatcher[HNil]
type PathMatcher1[T] = PathMatcher[T :: HNil]

The number and types of the values extracted by a PathMatcher instance is represented by the L <: HList
type parameter. The convenience alias PathMatcher0 can be used for all matchers which don’t extract anything
while PathMatcher1[T] defines a matcher which only extracts a single value of type T.

Here is an example of a more complex PathMatcher expression:

val matcher: PathMatcher1[Option[Int]] =
"foo" / "bar" / "X" ~ IntNumber.? / ("edit" | "create")

This will match paths like foo/bar/X42/edit or foo/bar/X/create.

Note: The path matching DSL describes what paths to accept after URL decoding. This is why the path-separating
slashes have special status and cannot simply be specified as part of a string! The string “foo/bar” would match the
raw URI path “foo%2Fbar”, which is most likely not what you want!

Basic PathMatchers A complex PathMatcher can be constructed by combining or modifying more basic ones.
Here are the basic matchers that spray-routing already provides for you:

String You can use a String instance as a PathMatcher0. Strings simply match themselves and extract no
value. Note that strings are interpreted as the decoded representation of the path, so if they include a ‘/’ character
this character will match “%2F” in the encoded raw URI!

Regex You can use a Regex instance as a PathMatcher1[String], which matches whatever the regex matches
and extracts one String value. A PathMatcher created from a regular expression extracts either the com-
plete match (if the regex doesn’t contain a capture group) or the capture group (if the regex contains exactly one
capture group). If the regex contains more than one capture group an IllegalArgumentException will
be thrown.

Map[String, T] You can use a Map[String, T] instance as a PathMatcher1[T], which matches any of
the keys and extracts the respective map value for it.

Slash: PathMatcher0 Matches exactly one path-separating slash (/) character and extracts nothing.

Segment: PathMatcher1[String] Matches if the unmatched path starts with a path segment (i.e. not a
slash). If so the path segment is extracted as a String instance.

PathEnd: PathMatcher0 Matches the very end of the path, similar to $ in regular expressions and extracts
nothing.

Rest: PathMatcher1[String] Matches and extracts the complete remaining unmatched part of the re-
quest’s URI path as an (encoded!) String. If you need access to the remaining decoded elements of the path use
RestPath instead.

5.7. spray-routing 139



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

RestPath: PathMatcher1[Path] Matches and extracts the complete remaining, unmatched part of the re-
quest’s URI path.

IntNumber: PathMatcher1[Int] Efficiently matches a number of decimal digits and extracts their (non-
negative) Int value. The matcher will not match zero digits or a sequence of digits that would represent an
Int value larger than Int.MaxValue.

LongNumber: PathMatcher1[Long] Efficiently matches a number of decimal digits and extracts their (non-
negative) Long value. The matcher will not match zero digits or a sequence of digits that would represent an
Long value larger than Long.MaxValue.

HexIntNumber: PathMatcher1[Int] Efficiently matches a number of hex digits and extracts their (non-
negative) Int value. The matcher will not match zero digits or a sequence of digits that would represent an
Int value larger than Int.MaxValue.

HexLongNumber: PathMatcher1[Long] Efficiently matches a number of hex digits and extracts their (non-
negative) Long value. The matcher will not match zero digits or a sequence of digits that would represent an
Long value larger than Long.MaxValue.

DoubleNumber: PathMatcher1[Double] Matches and extracts a Double value. The matched string rep-
resentation is the pure decimal, optionally signed form of a double value, i.e. without exponent.

JavaUUID: PathMatcher1[UUID] Matches and extracts a java.util.UUID instance.

Neutral: PathMatcher0 A matcher that always matches, doesn’t consume anything and extracts nothing.
Serves mainly as a neutral element in PathMatcher composition.

Segments: PathMatcher1[List[String]] Matches all remaining segments as a list of strings. Note that
this can also be “no segments” resulting in the empty list. If the path has a trailing slash this slash will not be
matched, i.e. remain unmatched and to be consumed by potentially nested directives.

separateOnSlashes(string: String): PathMatcher0 Converts a path string containing slashes
into a PathMatcher0 that interprets slashes as path segment separators. This means that a matcher matching
“%2F” cannot be constructed with this helper.

provide[L <: HList](extractions: L): PathMatcher[L] Always matches, consumes nothing
and extracts the given HList of values.

PathMatcher[L <: HList](prefix: Path, extractions: L): PathMatcher[L]
Matches and consumes the given path prefix and extracts the given list of extractions. If the given pre-
fix is empty the returned matcher matches always and consumes nothing.

Combinators Path matchers can be combined with these combinators to form higher-level constructs:

Tilde Operator (~) The tilde is the most basic combinator. It simply concatenates two matchers into one, i.e if the
first one matched (and consumed) the second one is tried. The extractions of both matchers are combined
type-safely. For example: "foo" ~ "bar" yields a matcher that is identical to "foobar".

Slash Operator (/) This operator concatenates two matchers and inserts a Slash matcher in between them. For
example: "foo" / "bar" is identical to "foo" ~ Slash ~ "bar".

Pipe Operator (|) This operator combines two matcher alternatives in that the second one is only tried if the first one
did not match. The two sub-matchers must have compatible types. For example: "foo" | "bar" will match
either “foo” or “bar”.

Modifiers Path matcher instances can be transformed with these modifier methods:

/ The slash operator cannot only be used as combinator for combining two matcher instances, it can also be used as
a postfix call. matcher / is identical to matcher ~ Slash but shorter and easier to read.

140 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

? By postfixing a matcher with ? you can turn any PathMatcher into one that always matches, optionally consumes
and potentially extracts an Option of the underlying matchers extraction. The result type depends on the type
of the underlying matcher:

If a matcher is of type then matcher.? is of type
PathMatcher0 PathMatcher0
PathMatcher1[T] PathMatcher1[Option[T]
PathMatcher[L <: HList] PathMatcher[Option[L]]

repeat(separator: PathMatcher0 = PathMatchers.Neutral) By postfixing a matcher with
repeat(separator) you can turn any PathMatcher into one that always matches, consumes zero or
more times (with the given separator) and potentially extracts a List of the underlying matcher’s extractions.
The result type depends on the type of the underlying matcher:

If a matcher is of type then matcher.repeat(...) is of type
PathMatcher0 PathMatcher0
PathMatcher1[T] PathMatcher1[List[T]
PathMatcher[L <: HList] PathMatcher[List[L]]

unary_! By prefixing a matcher with ! it can be turned into a PathMatcher0 that only matches if the underlying
matcher does not match and vice versa.

transform / (h)flatMap / (h)map These modifiers allow you to append your own “post-application” logic to
another matcher in order to form a custom one. You can map over the extraction(s), turn mismatches into
matches or vice-versa or do anything else with the results of the underlying matcher. Take a look at the method
signatures and implementations for more guidance as to how to use them.

Examples
// matches /foo/
path("foo" /)

// matches e.g. /foo/123 and extracts "123" as a String
path("foo" / """\d+""".r)

// matches e.g. /foo/bar123 and extracts "123" as a String
path("foo" / """bar(\d+)""".r)

// identical to `path(Segments)`
path(Segment.repeat(separator = Slash))

// matches e.g. /i42 or /hCAFE and extracts an Int
path("i" ~ IntNumber | "h" ~ HexIntNumber)

// identical to path("foo" ~ (PathEnd | Slash))
path("foo" ~ Slash.?)

// matches /red or /green or /blue and extracts 1, 2 or 3 respectively
path(Map("red" -> 1, "green" -> 2, "blue" -> 3))

// matches anything starting with "/foo" except for /foobar
pathPrefix("foo" ~ !"bar")

RangeDirectives

withRangeSupport Transforms the response from its inner route into a 206 Partial Content response if the
client requested only part of the resource with a Range header.

5.7. spray-routing 141



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Signature
def withRangeSupport(): Directive0
def withRangeSupport(rangeCountLimit: Int, rangeCoalescingThreshold:Long): Directive0

The signature shown is simplified, the real signature uses magnets. 1

Description Augments responses to GET requests with an Accept-Ranges: bytes header and converts them
into partial responses if the request contains a valid Range request header. The requested byte-ranges are coalesced
(merged) if they lie closer together than the specified rangeCoalescingThreshold argument.

In order to prevent the server from becoming overloaded with trying to prepare multipart/byteranges re-
sponses for high numbers of potentially very small ranges the directive rejects requests requesting more than
rangeCountLimit ranges with a TooManyRangesRejection. Requests with unsatisfiable ranges are rejected
with an UnsatisfiableRangeRejection.

The withRangeSupport() form (without parameters) uses the range-coalescing-threshold and
range-count-limit settings from the spray.routing configuration.

This directive is transparent to non-GET requests.

See also: https://tools.ietf.org/html/draft-ietf-httpbis-p5-range/

Example
val route =
withRangeSupport(4, 2L) {
complete("ABCDEFGH")

}

Get() ~> addHeader(Range(ByteRange(3, 4))) ~> route ~> check {
headers must contain(`Content-Range`(ContentRange(3, 4, 8)))
status === StatusCodes.PartialContent
responseAs[String] === "DE"

}

Get() ~> addHeader(Range(ByteRange(0, 1), ByteRange(1, 2), ByteRange(6, 7))) ~> route ~> check {
headers must not(contain(like[HttpHeader] { case `Content-Range`(_, _) ok }))
responseAs[MultipartByteRanges] must beLike {
case MultipartByteRanges(
BodyPart(entity1, `Content-Range`(RangeUnit.Bytes, range1) +: _) +:
BodyPart(entity2, `Content-Range`(RangeUnit.Bytes, range2) +: _) +: Seq()

) entity1.asString === "ABC" and range1 === ContentRange(0, 2, 8) and
entity2.asString === "GH" and range2 === ContentRange(6, 7, 8)

}
}

RespondWithDirectives

respondWithHeader Adds a given HTTP header to all responses coming back from its inner route.

Signature
def respondWithHeader(responseHeader: HttpHeader): Directive0

1 See The Magnet Pattern for an explanation of magnet-based overloading.

142 Chapter 5. Documentation

https://tools.ietf.org/html/draft-ietf-httpbis-p5-range/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description This directive transforms HttpResponse and ChunkedResponseStart messages coming back
from its inner route by adding the given HttpHeader instance to the headers list. If you’d like to add more than one
header you can use the respondWithHeaders directive instead.

Example
val route =
path("foo") {
respondWithHeader(RawHeader("Funky-Muppet", "gonzo")) {
complete("beep")

}
}

Get("/foo") ~> route ~> check {
header("Funky-Muppet") === Some(RawHeader("Funky-Muppet", "gonzo"))
responseAs[String] === "beep"

}

respondWithHeaders Adds the given HTTP headers to all responses coming back from its inner route.

Signature
def respondWithHeaders(responseHeaders: HttpHeader*): Directive0
def respondWithHeaders(responseHeaders: List[HttpHeader]): Directive0

Description This directive transforms HttpResponse and ChunkedResponseStart messages coming back
from its inner route by adding the given HttpHeader instances to the headers list. If you’d like to add just a single
header you can use the respondWithHeader directive instead.

Example
val route =
path("foo") {
respondWithHeaders(RawHeader("Funky-Muppet", "gonzo"), Origin(Seq(HttpOrigin("http://spray.io")))) {

complete("beep")
}

}

Get("/foo") ~> route ~> check {
header("Funky-Muppet") === Some(RawHeader("Funky-Muppet", "gonzo"))
header[Origin] === Some(Origin(Seq(HttpOrigin("http://spray.io"))))
responseAs[String] === "beep"

}

respondWithMediaType Overrides the media-type of the response returned by its inner route with the given one.

Signature
def respondWithMediaType(mediaType: MediaType): Directive0

Description This directive transforms HttpResponse and ChunkedResponseStart messages coming back
from its inner route by overriding the entity.contentType.mediaType with the given one if the entity is
non-empty. Empty response entities are left unchanged.

5.7. spray-routing 143



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

If the given media-type is not accepted by the client the request is rejected with an
UnacceptedResponseContentTypeRejection.

Note: This directive removes a potentially existing Accept header from the request, in order to “disable” content
negotiation in a potentially running Marshaller in its inner route. Also note that this directive does not change the
response entity buffer content in any way, it merely overrides the media-type component of the entities Content-Type.

Example
import MediaTypes._

val route =
path("foo") {
respondWithMediaType(`application/json`) {

complete("[]") // marshalled to `text/plain` here
}

}

Get("/foo") ~> route ~> check {
mediaType === `application/json`
responseAs[String] === "[]"

}

Get("/foo") ~> Accept(MediaRanges.`text/*`) ~> route ~> check {
rejection === UnacceptedResponseContentTypeRejection(ContentType(`application/json`) :: Nil)

}

respondWithSingletonHeader Adds a given HTTP header to all responses coming back from its inner route only
if a header with the same name doesn’t exist yet in the response.

Signature
def respondWithSingletonHeader(responseHeader: HttpHeader): Directive0

Description This directive transforms HttpResponse and ChunkedResponseStart messages coming back
from its inner route by potentially adding the given HttpHeader instance to the headers list. The header is only
added if there is no header instance with the same name (case insensitively) already present in the response. If you’d
like to add more than one header you can use the respondWithSingletonHeaders directive instead.

Example
val respondWithMuppetHeader =
respondWithSingletonHeader(RawHeader("Funky-Muppet", "gonzo"))

val route =
path("foo") {
respondWithMuppetHeader {

complete("beep")
}

} ~
path("bar") {
respondWithMuppetHeader {

respondWithHeader(RawHeader("Funky-Muppet", "kermit")) {

144 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

complete("beep")
}

}
}

Get("/foo") ~> route ~> check {
headers.filter(_.is("funky-muppet")) === List(RawHeader("Funky-Muppet", "gonzo"))
responseAs[String] === "beep"

}

Get("/bar") ~> route ~> check {
headers.filter(_.is("funky-muppet")) === List(RawHeader("Funky-Muppet", "kermit"))
responseAs[String] === "beep"

}

respondWithSingletonHeaders Adds the given HTTP headers to all responses coming back from its inner route
only if a respective header with the same name doesn’t exist yet in the response.

Signature
def respondWithSingletonHeaders(responseHeaders: HttpHeader*): Directive0
def respondWithSingletonHeaders(responseHeaders: List[HttpHeader]): Directive0

Description This directive transforms HttpResponse and ChunkedResponseStart messages coming back
from its inner route by potentially adding the given HttpHeader instances to the headers list. A header is only added
if there is no header instance with the same name (case insensitively) already present in the response. If you’d like to
add only a single header you can use the respondWithSingletonHeader directive instead.

Example See the respondWithSingletonHeader directive for an example with only one header.

respondWithStatus Overrides the status code of all responses coming back from its inner route with the given one.

Signature
def respondWithStatus(responseStatus: StatusCode): Directive0

Description This directive transforms HttpResponse and ChunkedResponseStart messages coming back
from its inner route by unconditionally overriding the status code with the given one.

Example
val route =
path("foo") {
respondWithStatus(201) {

complete("beep")
}

}

Get("/foo") ~> route ~> check {
status === StatusCodes.Created
responseAs[String] === "beep"

}

5.7. spray-routing 145



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

RouteDirectives

The RouteDirectives have a special role in spray’s routing DSL. Contrary to all other directives (except most
FileAndResourceDirectives) they do not produce instances of type Directive[L <: HList] but rather “plain”
routes of type Route. The reason is that the RouteDirectives are not meant for wrapping an inner route (like
most other directives, as intermediate-level elements of a route structure, do) but rather form the actual route structure
leaves.

So in most cases the inner-most element of a route structure branch is one of the RouteDirectives (or FileAn-
dResourceDirectives):

complete Completes the request using the given argument(s).

Signature
def complete[T :ToResponseMarshaller](value: T): StandardRoute
def complete(response: HttpResponse): StandardRoute
def complete(status: StatusCode): StandardRoute
def complete[T :Marshaller](status: StatusCode, value: T): StandardRoute
def complete[T :Marshaller](status: Int, value: T): StandardRoute
def complete[T :Marshaller](status: StatusCode, headers: Seq[HttpHeader], value: T): StandardRoute
def complete[T :Marshaller](status: Int, headers: Seq[HttpHeader], value: T): StandardRoute

The signature shown is simplified, the real signature uses magnets. 1

Description complete uses the given arguments to construct a Route which simply calls
requestContext.complete with the respective HttpResponse instance. Completing the request will
send the response “back up” the route structure where all logic that wrapping directives have potentially chained into
the responder chain is run (see also The Responder Chain). Once the response hits the top-level runRoute logic
it is sent back to the underlying spray-can or spray-servlet layer which will trigger the sending of the actual HTTP
response message back to the client.

Example
val route =
path("a") {
complete(HttpResponse(entity = "foo"))

} ~
path("b") {
complete(StatusCodes.Created, "bar")

} ~
(path("c") & complete("baz")) // `&` also works with `complete` as the 2nd argument

Get("/a") ~> route ~> check {
status === StatusCodes.OK
responseAs[String] === "foo"

}

Get("/b") ~> route ~> check {
status === StatusCodes.Created
responseAs[String] === "bar"

}

Get("/c") ~> route ~> check {

1 See The Magnet Pattern for an explanation of magnet-based overloading.

146 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

status === StatusCodes.OK
responseAs[String] === "baz"

}

failWith Bubbles up the given error through the route structure where it is dealt with by the closest
handleExceptions directive and its ExceptionHandler.

Signature
def failWith(error: Throwable): StandardRoute

Description failWith explicitly raises an exception that gets bubbled up through the route structure to be picked
up by the nearest handleExceptions directive. If no handleExceptions is present above the respective
location in the route structure The runRoute Wrapper will handle the exception and translate it into a corresponding
HttpResponse using the in-scope ExceptionHandler (see also the Exception Handling chapter).

There is one notable special case: If the given exception is a RejectionError exception it is not bubbled up, but
rather the wrapped exception is unpacked and “executed”. This allows the “tunneling” of a rejection via an exception.

Example
val route =
path("foo") {
failWith(new RequestProcessingException(StatusCodes.BandwidthLimitExceeded))

}

Get("/foo") ~> sealRoute(route) ~> check {
status === StatusCodes.BandwidthLimitExceeded
responseAs[String] === "Bandwidth limit has been exceeded."

}

redirect Completes the request with a redirection response to a given targer URI and of a given redirection type
(status code).

Signature
def redirect(uri: Uri, redirectionType: Redirection): StandardRoute

Description redirect is a convenience helper for completing the request with a redirection response. It is equiv-
alent to this snippet relying on the complete directive:

complete {
HttpResponse(
status = redirectionType,
headers = Location(uri) :: Nil,
entity = redirectionType.htmlTemplate match {
case "" HttpEntity.Empty
case template HttpEntity(`text/html`, template format uri)

})
}

5.7. spray-routing 147



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Example
val route =
pathPrefix("foo") {
pathSingleSlash {

complete("yes")
} ~
pathEnd {

redirect("/foo/", StatusCodes.PermanentRedirect)
}

}

Get("/foo/") ~> route ~> check {
responseAs[String] === "yes"

}

Get("/foo") ~> route ~> check {
status === StatusCodes.PermanentRedirect
responseAs[String] === """The request, and all future requests should be repeated using <a href="/foo/">this URI</a>."""

}

reject Explicitly rejects the request optionally using the given rejection(s).

Signature
def reject: StandardRoute
def reject(rejections: Rejection*): StandardRoute

Description reject uses the given rejection instances (which might be the empty Seq) to construct a Route
which simply calls requestContext.reject. See the chapter on Rejections for more information on what this
means.

After the request has been rejected at the respective point it will continue to flow through the routing structure in the
search for a route that is able to complete it.

The explicit reject directive is used mostly when building Custom Directives, e.g. inside of a flatMap modifier
for “filtering out” certain cases.

Example
val route =
path("a") {
reject // don't handle here, continue on

} ~
path("a") {
complete("foo")

} ~
path("b") {
// trigger a ValidationRejection explicitly
// rather than through the `validate` directive
reject(ValidationRejection("Restricted!"))

}

Get("/a") ~> route ~> check {
responseAs[String] === "foo"

}

148 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Get("/b") ~> route ~> check {
rejection === ValidationRejection("Restricted!")

}

SchemeDirectives

Scheme directives can be used to extract the Uri scheme (i.e. “http”, “https”, etc.) from requests or to reject any
request that does not match a specified scheme name.

scheme Rejects a request if its Uri scheme does not match a given one.

Signature
def scheme(schm: String): Directive0

Description The scheme directive can be used to match requests by their Uri scheme, only passing through requests
that match the specified scheme and rejecting all others.

A typical use case for the scheme directive would be to reject requests coming in over http instead of https, or to
redirect such requests to the matching https URI with a MovedPermanently.

For simply extracting the scheme name, see the schemeName directive.

Example
val route =
scheme("http") {
extract(_.request.uri) { uri

redirect(uri.copy(scheme = "https"), MovedPermanently)
}

} ~
scheme("https") {
complete(s"Safe and secure!")

}

Get("http://www.example.com/hello") ~> route ~> check {
status === MovedPermanently
header[Location] === Some(Location(Uri("https://www.example.com/hello")))

}

Get("https://www.example.com/hello") ~> route ~> check {
responseAs[String] === "Safe and secure!"

}

schemeName Extracts the value of the request Uri scheme.

Signature
def schemeName: Directive1[String]

5.7. spray-routing 149



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Description The schemeName directive can be used to determine the Uri scheme (i.e. “http”, “https”, etc.) for an
incoming request.

For rejecting a request if it doesn’t match a specified scheme name, see the scheme directive.

Example
val route =
schemeName { scheme =>
complete(s"The scheme is '${scheme}'")

}

Get("https://www.example.com/") ~> route ~> check {
responseAs[String] === "The scheme is 'https'"

}

SecurityDirectives

authenticate Authenticates a request by checking credentials supplied in the request and extracts a value represent-
ing the authenticated principal.

Signature
def authenticate[T](auth: Future[Authentication[T]])(implicit executor: ExecutionContext): Directive1[T]
def authenticate[T](auth: ContextAuthenticator[T])(implicit executor: ExecutionContext): Directive1[T]

The signature shown is simplified, the real signature uses magnets. 1

Description On the lowest level, authenticate, takes either a Future[Authentication[T]] which
authenticates based on values from the lexical scope or a value of type ContextAuthenticator[T]
= RequestContext Future[Authentication[T]] which extracts authentication data from the
RequestContext. The returned value of type Authentication[T] must either be the authenticated princi-
pal which will be supplied to the inner route or a rejection to reject the request with if authentication failed .

Both variants return futures so that the actual authentication procedure runs detached from route processing and pro-
cessing of the inner route will be continued once the authentication finished. This allows longer-running authentication
tasks (like looking up credentials in a database) to run without blocking the HttpService actor, freeing it for other
requests. The authenticate directive itself isn’t tied to any HTTP-specific details so that various authentication
schemes can be implemented on top of authenticate.

Standard HTTP-based authentication which uses the WWW-Authenticate header containing challenge data and
Authorization header for receiving credentials is implemented in subclasses of HttpAuthenticator.

HTTP Basic Authentication spray supports HTTP basic authentication through the
BasicHttpAuthenticator and provides a series of convenience constructors for different scenarios with
BasicAuth(). Make sure to use basic authentication only over SSL because credentials are transferred in plaintext.

Implementing a UserPassAuthenticator The most generic way of deploying HTTP basic authentication
uses a UserPassAuthenticator to validate a user/password combination. It is defined like this:

type UserPassAuthenticator[T] = Option[UserPass] Future[Option[T]]

1 See The Magnet Pattern for an explanation of magnet-based overloading.

150 Chapter 5. Documentation

http://en.wikipedia.org/wiki/Basic_auth


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Its job is to map a user/password combination (if existent in the request) to an authenticated custom principal of type
T (if authenticated).

def myUserPassAuthenticator(userPass: Option[UserPass]): Future[Option[String]] =
Future {
if (userPass.exists(up => up.user == "John" && up.pass == "p4ssw0rd")) Some("John")
else None

}

val route =
sealRoute {
path("secured") {

authenticate(BasicAuth(myUserPassAuthenticator _, realm = "secure site")) { userName =>
complete(s"The user is '$userName'")

}
}

}

Get("/secured") ~> route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The resource requires authentication, which was not supplied with the request"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge("Basic", "secure site")

}

val validCredentials = BasicHttpCredentials("John", "p4ssw0rd")
Get("/secured") ~>

addCredentials(validCredentials) ~> // adds Authorization header
route ~> check {
responseAs[String] === "The user is 'John'"

}

val invalidCredentials = BasicHttpCredentials("Peter", "pan")
Get("/secured") ~>

addCredentials(invalidCredentials) ~> // adds Authorization header
route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The supplied authentication is invalid"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge("Basic", "secure site")

}

From configuration There are several overloads to configure users from the configuration file. Obviously, this is
neither a secure (plaintext passwords) nor a scalable approach. If you don’t pass in a custom config users are configured
from the Configuration path spray.routing.users.

def extractUser(userPass: UserPass): String = userPass.user
val config = ConfigFactory.parseString("John = p4ssw0rd")

val route =
sealRoute {
path("secured") {

authenticate(BasicAuth(realm = "secure site", config = config, createUser = extractUser _)) { userName =>
complete(s"The user is '$userName'")

}
}

}

Get("/secured") ~> route ~> check {
status === StatusCodes.Unauthorized

5.7. spray-routing 151



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

responseAs[String] === "The resource requires authentication, which was not supplied with the request"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge("Basic", "secure site")

}

val validCredentials = BasicHttpCredentials("John", "p4ssw0rd")
Get("/secured") ~>

addCredentials(validCredentials) ~> // adds Authorization header
route ~> check {
responseAs[String] === "The user is 'John'"

}

val invalidCredentials = BasicHttpCredentials("Peter", "pan")
Get("/secured") ~>

addCredentials(invalidCredentials) ~> // adds Authorization header
route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The supplied authentication is invalid"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge("Basic", "secure site")

}

From LDAP (todo)

authorize Guards access to the inner route with a user-defined check.

Signature
def authorize(check: Boolean): Directive0
def authorize(check: RequestContext Boolean): Directive0

Description The user-defined authorization check can either be supplied as a Boolean value which is calculated
just from information out of the lexical scope, or as a function RequestContext Boolean which can also
take information from the request itself into account. If the check returns true the request is passed on to the inner
route unchanged, otherwise an AuthorizationFailedRejection is created, triggering a 403 Forbidden
response by default (the same as in the case of an AuthenticationFailedRejection).

In a common use-case you would check if a user (e.g. supplied by the authenticate directive) is allowed to access the
inner routes, e.g. by checking if the user has the needed permissions.

Example
def extractUser(userPass: UserPass): String = userPass.user
val config = ConfigFactory.parseString("John = p4ssw0rd\nPeter = pan")
def hasPermissionToPetersLair(userName: String) = userName == "Peter"

val route =
sealRoute {
authenticate(BasicAuth(realm = "secure site", config = config, createUser = extractUser _)) { userName =>

path("peters-lair") {
authorize(hasPermissionToPetersLair(userName)) {
complete(s"'$userName' visited Peter's lair")

}
}

}
}

152 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

val johnsCred = BasicHttpCredentials("John", "p4ssw0rd")
Get("/peters-lair") ~>

addCredentials(johnsCred) ~> // adds Authorization header
route ~> check {
status === StatusCodes.Forbidden
responseAs[String] === "The supplied authentication is not authorized to access this resource"

}

val petersCred = BasicHttpCredentials("Peter", "pan")
Get("/peters-lair") ~>

addCredentials(petersCred) ~> // adds Authorization header
route ~> check {
responseAs[String] === "'Peter' visited Peter's lair"

}

optionalAuthenticate Authenticates a request by checking credentials supplied in the request and extracts a value
representing the authenticated principal, or None if no credentials were supplied.

Signature
def optionalAuthenticate[T](auth: Future[Authentication[T]])(implicit executor: ExecutionContext): Directive1[Option[T]]
def optionalAuthenticate[T](auth: ContextAuthenticator[T])(implicit executor: ExecutionContext): Directive1[Option[T]]

The signature shown is simplified, the real signature uses magnets. 1

Description The optionalAuthenticate directive is similar to the authenticate directive but always
extracts an Option value instead of rejecting the request if no credentials could be found.

Authentication vs. Authorization Authentication is the process of establishing a known identity for the user,
whereby ‘identity’ is defined in the context of the application. This may be done with a username/password com-
bination, a cookie, a pre-defined IP or some other mechanism. After authentication the system believes that it knows
who the user is.

Authorization is the process of determining, whether a given user is allowed access to a given resource or not. In
most cases, in order to be able to authorize a user (i.e. allow access to some part of the system) the users identity must
already have been established, i.e. he/she must have been authenticated. Without prior authentication the authorization
would have to be very crude, e.g. “allow access for all users” or “allow access for noone”. Only after authentication
will it be possible to, e.g., “allow access to the statistics resource for _admins_, but not for regular members”.

Authentication and authorization may happen at the same time, e.g. when everyone who can properly be authenticated
is also allowed access (which is often a very simple and somewhat implicit authorization logic). In other cases the
system might have one mechanism for authentication (e.g. establishing user identity via an LDAP lookup) and another
one for authorization (e.g. a database lookup for retrieving user access rights).

5.7.9 Complete Examples

The /examples/spray-routing/ directory of the spray repository contains a number of example projects for spray-
routing, which are described here.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

5.7. spray-routing 153

https://github.com/spray/spray/tree/release/1.1/examples/spray-routing


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

on-spray-can

This examples demonstrates how to run spray-routing on top of the spray-can HTTP Server. It implements a very
simple web-site and shows off various features like streaming, stats support and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project on-spray-can" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project on-spray-can and run sequentially “inside” of SBT.)

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

curl -v 127.0.0.1:8080/stop

on-jetty

This examples demonstrates how to run spray-routing on top of spray-servlet. It implements a very simple web-site
and shows off various features like streaming, stats support and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project on-jetty" container:start shell

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

container:stop

154 Chapter 5. Documentation

http://127.0.0.1:8080/
http://127.0.0.1:8080/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

simple-routing-app

This examples demonstrates how to use the SimpleRoutingApp trait.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-routing-app" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-routing-app and run sequentially “inside” of SBT.)

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

curl -v 127.0.0.1:8080/stop

5.7.10 Minimal Example

This is a complete, very basic spray-routing application:

import spray.routing.SimpleRoutingApp

object Main extends App with SimpleRoutingApp {
implicit val system = ActorSystem("my-system")

startServer(interface = "localhost", port = 8080) {
path("hello") {

get {
complete {
<h1>Say hello to spray</h1>

}
}

}
}

}

It starts a spray-can HTTP Server on localhost and replies to GET requests to /hello with a simple response.

5.7.11 Longer Example

The following is a spray-routing route definition that tries to show off a few features. The resulting service does not
really do anything useful but its definition should give you a feel for what an actual API definition with spray-routing
will look like:

5.7. spray-routing 155

http://127.0.0.1:8080/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

import scala.concurrent.duration.Duration
import spray.routing.HttpService
import spray.routing.authentication.BasicAuth
import spray.routing.directives.CachingDirectives._
import spray.httpx.encoding._

trait LongerService extends HttpService with MyApp {

val simpleCache = routeCache(maxCapacity = 1000, timeToIdle = Duration("30 min"))

val route = {
path("orders") {

authenticate(BasicAuth(realm = "admin area")) { user =>
get {
cache(simpleCache) {
encodeResponse(Deflate) {
complete {
// marshal custom object with in-scope marshaller
getOrdersFromDB

}
}

}
} ~
post {
// decompresses the request with Gzip or Deflate when required
decompressRequest() {

// unmarshal with in-scope unmarshaller
entity(as[Order]) { order =>

// transfer to newly spawned actor
detach() {
complete {
// ... write order to DB
"Order received"

}
}

}
}

}
}

} ~
// extract URI path element as Int
pathPrefix("order" / IntNumber) { orderId =>
pathEnd {

// method tunneling via query param
(put | parameter('method ! "put")) {
// form extraction from multipart or www-url-encoded forms
formFields('email, 'total.as[Money]).as(Order) { order =>
complete {
// complete with serialized Future result
(myDbActor ? Update(order)).mapTo[TransactionResult]

}
}

} ~
get {
// JSONP support
jsonpWithParameter("callback") {

// use in-scope marshaller to create completer function
produce(instanceOf[Order]) { completer => ctx =>

156 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

processOrderRequest(orderId, completer)
}

}
}

} ~
path("items") {

get {
// parameters to case class extraction
parameters('size.as[Int], 'color ?, 'dangerous ? "no")

.as(OrderItem) { orderItem =>
// ... route using case class instance created from
// required and optional query parameters

}
}

}
} ~
pathPrefix("documentation") {

// cache responses to GET requests
cache(simpleCache) {

// optionally compresses the response with Gzip or Deflate
// if the client accepts compressed responses
compressResponse() {
// serve up static content from a JAR resource
getFromResourceDirectory("docs")

}
}

} ~
path("oldApi" / Rest) { pathRest =>

redirect("http://oldapi.example.com/" + pathRest, StatusCodes.MovedPermanently)
}

}
}

5.8 spray-servlet

spray-servlet is an adapter layer providing (a subset of) the spray-can HTTP Server interface on top of the Servlet
API. As one main application it enables the use of spray-routing in a servlet container.

5.8.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-servlet depends on

• spray-http

• spray-util

• spray-io (only required until the upgrade to Akka 2.2, will go away afterwards)

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• the Servlet-3.0 API (with ‘provided’ scope, usually automatically available from your servlet container)

5.8. spray-servlet 157



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.8.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-servlet into your classpath. You might
also want to check out:

• The xsbt-web-plugin for simplifying the development process

• The Getting Started chapter for info on the spray project template for spray-servlet

5.8.3 Configuration

Just like Akka spray-servlet relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf, in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-servlet module:

#######################################
# spray-servlet Reference Config File #
#######################################

# This is the reference config file that contains all the default settings.
# Make your edits/overrides in your application.conf.

spray.servlet {

# The FQN (Fully Qualified Name) of the class to load when the
# servlet context is initialized (e.g. "com.example.ApiBoot").
# The class must have a constructor with a single
# `javax.servlet.ServletContext` parameter and implement
# the `spray.servlet.WebBoot` trait.
boot-class = ""

# If a request hasn't been responded to after the time period set here
# a `spray.http.Timedout` message will be sent to the timeout handler.
# Set to `infinite` to completely disable request timeouts.
request-timeout = 30 s

# After a `Timedout` message has been sent to the timeout handler and the
# request still hasn't been completed after the time period set here
# the server will complete the request itself with an error response.
# Set to `infinite` to disable timeout timeouts.
timeout-timeout = 500 ms

# The path of the actor to send `spray.http.Timedout` messages to.
# If empty all `Timedout` messages will go to the "regular" request handling actor.
timeout-handler = ""

# A path prefix that is automatically "consumed" before the request is
# being dispatched to the HTTP service route.
# Can be used to match servlet context paths configured for the application.
# Make sure to include a leading slash with your prefix, e.g. "/foobar".
# Set to `AUTO` to make spray-servlet pick up the ServletContext::getContextPath.

158 Chapter 5. Documentation

https://github.com/JamesEarlDouglas/xsbt-web-plugin
https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

root-path = AUTO

# Enables/disables the addition of a `Remote-Address` header
# holding the clients (remote) IP address.
remote-address-header = off

# Enables/disables the returning of more detailed error messages to
# the client in the error response.
# Should be disabled for browser-facing APIs due to the risk of XSS attacks
# and (probably) enabled for internal or non-browser APIs.
# Note that spray will always produce log messages containing the full error details.
verbose-error-messages = off

# The maximum size of the request entity that is still accepted by the server.
# Requests with a greater entity length are rejected with an error response.
# Must be greater than zero.
max-content-length = 5 m

# Enables/disables the inclusion of `spray.servlet.ServletRequestInfoHeader` in the
# headers of the HTTP request sent to the service actor.
servlet-request-access = off

# Enables/disables the logging of warning messages in case an incoming
# message (request or response) contains an HTTP header which cannot be
# parsed into its high-level model class due to incompatible syntax.
# Note that, independently of this settings, spray will accept messages
# with such headers as long as the message as a whole would still be legal
# under the HTTP specification even without this header.
# If a header cannot be parsed into a high-level model instance it will be
# provided as a `RawHeader`.
illegal-header-warnings = on

# Sets the strictness mode for parsing request target URIs.
# The following values are defined:
#
# `strict`: RFC3986-compliant URIs are required,
# a 400 response is triggered on violations
#
# `relaxed`: all visible 7-Bit ASCII chars are allowed
#
# `relaxed-with-raw-query`: like `relaxed` but additionally
# the URI query is not parsed, but delivered as one raw string
# as the `key` value of a single Query structure element.
#
uri-parsing-mode = relaxed

}

5.8.4 Basic Architecture

The central element of spray-servlet is the Servlet30ConnectorServlet. Its job is to accept incoming HTTP
requests, suspend them (using Servlet 3.0 startAsync), create immutable spray-http HttpRequest instances for
them and dispatch these to a service actor provided by the application.

The messaging API as seen from the application is modeled as closely as possible like its counterpart, the spray-can
HTTP Server.

In the most basic case, the service actor completes a request by simply replying with an HttpResponse instance to

5.8. spray-servlet 159



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

the request sender:

def receive = {
case HttpRequest(...) => sender ! HttpResponse(...)

}

5.8.5 Starting and Stopping

A spray-servlet application is started by the servlet container. The application JAR should contain a web.xml similar
to this one from the simple-spray-servlet-server example.

The web.xml registers a ServletContextListener (spray.servlet.Initializer), which initializes
the application when the servlet is started. The Initializer loads the configured boot-class and instantiates
it using the default constructor, which must be available. The boot class must implement the WebBoot trait, which is
defined like this:

/**
* Trait that must be implemented by the Boot class.

*/
trait WebBoot {

/**
* The ActorSystem the application would like to use.

*/
def system: ActorSystem

/**
* The service actor to dispatch incoming HttpRequests to.

*/
def serviceActor: ActorRef

}

A very basic boot class implementation is this one from the simple-spray-servlet-server example.

The boot class is responsible for creating the Akka ActorSystem for the application as well as the service actor.
When the application is shut down by the servlet container the Initializer shuts down the ActorSystem,
which cleanly terminates all application actors including the service actor.

5.8.6 Message Protocol

Just like in its counterpart, the spray-can HTTP Server, all communication between the connector servlet and the
application happens through actor messages.

Request-Response Cycle

As soon as a new request has been successfully read from the servlet API it is dispatched to the service actor created
by the boot class. The service actor processes the request according to the application logic and responds by sending
an HttpResponse instance to the sender of the request.

The ActorRef used as the sender of an HttpRequest received by the service actor is unique to the request, i.e.
each request will appear to be sent from different senders. spray-servlet uses these sender ActorRefs to coalesce
the response with the request, so you cannot sent several responses to the same sender. However, the different response
parts of a chunked response need to be sent to the same sender.

160 Chapter 5. Documentation

https://github.com/spray/spray/blob/master/examples/spray-servlet/simple-spray-servlet-server/src/main/webapp/WEB-INF/web.xml
https://github.com/spray/spray/blob/master/examples/spray-servlet/simple-spray-servlet-server/src/main/scala/spray/examples/Boot.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Caution: Since the ActorRef used as the sender of a request is an UnregisteredActorRef it is not reachable
remotely. This means that the service actor needs to live in the same JVM as the connector servlet.

Chunked Responses

Alternatively to a single HttpResponse instance the handler can choose to respond to the request sender with the
following sequence of individual messages:

• One ChunkedResponseStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The connector servlet writes the individual response parts into the servlet response OutputStream and flushes it.
Whether these parts are really rendered “to the wire” as chunked message parts depends on the servlet container
implementation. The Servlet API has not dedicated support for chunked responses.

Request Timeouts

If the service actor does not complete a request within the configured request-timeout period a
spray.http.Timedout message is sent to the timeout handler, which can be the service actor itself or another ac-
tor (depending on the timeout-handler config setting). The timeout handler then has the chance to complete the
request within the time period configured as timeout-timeout. Only if the timeout handler also misses its dead-
line for completing the request will the connector servlet complete the request itself with a “hard-coded” error response
(which you can change by overriding the timeoutResponse method of the Servlet30ConnectorServlet).

Send Confirmations

If required the connector servlet can reply with a “send confirmation” message to every response (part) coming in
from the application. You request a send confirmation by modifying a response part with the withAck method (see
the ACKed Sends section of the spray-can documentation for example code). Confirmation messages are especially
helpful for triggering the sending of the next response part in a response streaming scenario, since with such a design
the application will never produce more data than the servlet container can handle.

Send confirmations are always dispatched to the actor, which sent the respective response (part).

Closed Notifications

The Servlet API completely hides the actual management of the HTTP connections from the application. Therefore the
connector servlet has no real way of finding out whether a connection was closed or not. However, if the connection
was closed unexpectedly for whatever reason a subsequent attempt to write to it usually fails with an IOException.
In order to adhere to same message protocol as the spray-can HTTP Server the connector servlet therefore dispatches
any exception, which the servlet container throws when a response (part) is written, back to the application wrapped
in an Tcp.ErrorClosed message.

In addition the connector servlet also dispatches Tcp.Closed notification messages after the final part of a response
has been successfully written to the servlet container. This allows the application to use the same execution model for
spray-servlet as it would for the spray-can HTTP Server.

5.8. spray-servlet 161



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.8.7 HTTP Headers

The connector servlet always passes all received headers on to the application. Additionally the values of the
Content-Length and Content-Type headers are interpreted by the servlet itself. All other headers are of
no interest to it.

Also, if your HttpResponse instances include a Content-Length or Content-Type header they will be
ignored and not written through to the servlet container (as the connector servlet sets these response headers itself).

Note: The Content-Type header has special status in spray since its value is part of the HttpEntity model
class. Even though the header also remains in the headers list of the HttpRequest spray’s higher layers (like
spray-routing) only work with the Content-Type value contained in the HttpEntity.

5.8.8 Accessing HttpServletRequest

If your application needs access to the javax.servlet.http.HttpServletRequest, the
spray.servlet.servlet-request-access setting can be set to on. This results in the connector
servlet adding an additional request header of type spray.servlet.ServletRequestInfoHeader.
This allows the service actor (or directives) to access members of HttpServletRequest that are not in
HttpRequest. This is necessary when working with container managed security and access to the authenticated
principal is required (via getUserPrincipal) or when accessing an authenticated client SSL certificate (via
getAttribute("javax.servlet.request.X509Certificate")).

5.8.9 Differences to spray-can

Chunked Requests Since the Servlet API does not expose the individual request parts of chunked requests to a servlet
there is no way spray-servlet can pass them through to the application. The way chunked requests are handled
is completely up to the servlet container.

Chunked Responses spray-can renders ChunkedResponseStart, MessageChunks and
ChunkedMessageEnd messages directly to “the wire”. Since the Servlet API operates on a some-
what higher level of abstraction spray-servlet can only write these messages to the servlet container one by one,
with flush calls in between. The way the servlet container interprets these calls is up to its implementation.

Closed Messages The Servlet API completely hides the actual management of the HTTP connections from the appli-
cation. Therefore the connector servlet has no way of finding out whether a connection was closed or not. In
order to provide a similar message protocol as spray-can the connector servlet therefore simply assumes that all
connections are closed after the final part of a response has been written, no matter whether the servlet container
actually uses persistent connections or not.

Timeout Semantics When working with chunked responses the semantics of the request-timeout config setting
are different. In spray-can it designates the maximum time, in which a response must have been started (i.e. the
first chunk received), while in spray-servlet it defines the time, in which the response must have been completed
(i.e. the last chunk received).

HTTP Pipelining & SSL Support Whether and how HTTP pipelining and SSL/TLS encryption are supported de-
pends on the servlet container implementation.

5.8.10 Packaging a WAR file

If you use the xsbt-web-plugin you can very easily package your project into a WAR file with the package command
provided by the plugin.

162 Chapter 5. Documentation

https://github.com/JamesEarlDouglas/xsbt-web-plugin


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.8.11 Example

The /examples/spray-servlet/ directory of the spray repository contains a number of example projects for spray-servlet.

simple-spray-servlet-server

This example implements a very simple web-site built on top of spray-servlet. It shows off various features like
streaming and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-spray-servlet-server" container:start shell

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

container:stop

5.9 spray-testkit

One of sprays core design goals is good testability of the created services. Since actor-based systems can sometimes
be cumbersome to test spray fosters the separation of processing logic from actor code in most of its modules.

For services built with spray-routing spray provides a dedicated test DSL that makes actor-less testing of route logic
easy and convenient. This “route test DSL” is made available with the spray-testkit module.

5.9.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-testkit depends on

• spray-http (with ‘provided’ scope)

• spray-httpx (with ‘provided’ scope)

• spray-routing (with ‘provided’ scope)

• spray-util

• akka-actor 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• akka-testkit 2.1.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• scalatest (with ‘provided’ scope, for the ScalatestRouteTest)

5.9. spray-testkit 163

https://github.com/spray/spray/tree/release/1.1/examples/spray-servlet
http://127.0.0.1:8080/
http://scalatest.org/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• specs2 (with ‘provided’ scope, for the Specs2RouteTest)

5.9.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-testkit into your classpath. However, since
you normally don’t need to have access to spray-testkit from your production code, you should limit the dependency
to the test scope:

libraryDependencies += "io.spray" % "spray-testkit" % version % "test"

Currently spray-testkit supports the two most popular scala testing frameworks, scalatest and specs2. Depending on
which one you are using you need to mix either the ScalatestRouteTest or the Specs2RouteTest trait into
your test specification.

5.9.3 Usage

Here is an example of what a simple test with spray-testkit might look like:

import org.specs2.mutable.Specification
import spray.testkit.Specs2RouteTest
import spray.routing.HttpService
import spray.http.StatusCodes._

class FullTestKitExampleSpec extends Specification with Specs2RouteTest with HttpService {
def actorRefFactory = system // connect the DSL to the test ActorSystem

val smallRoute =
get {

pathSingleSlash {
complete {
<html>
<body>
<h1>Say hello to <i>spray</i>!</h1>

</body>
</html>

}
} ~
path("ping") {

complete("PONG!")
}

}

"The service" should {

"return a greeting for GET requests to the root path" in {
Get() ~> smallRoute ~> check {

responseAs[String] must contain("Say hello")
}

}

"return a 'PONG!' response for GET requests to /ping" in {
Get("/ping") ~> smallRoute ~> check {

responseAs[String] === "PONG!"
}

}

164 Chapter 5. Documentation

http://etorreborre.github.com/specs2/
http://scalatest.org/
http://etorreborre.github.com/specs2/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

"leave GET requests to other paths unhandled" in {
Get("/kermit") ~> smallRoute ~> check {

handled must beFalse
}

}

"return a MethodNotAllowed error for PUT requests to the root path" in {
Put() ~> sealRoute(smallRoute) ~> check {

status === MethodNotAllowed
responseAs[String] === "HTTP method not allowed, supported methods: GET"

}
}

}
}

The basic structure of a test built with spray-testkit is this (expression placeholder in all-caps):

REQUEST ~> ROUTE ~> check {
ASSERTIONS

}

In this template REQUEST is an expression evaluating to an HttpRequest instance. Since both RouteTest traits
extend the spray-httpx Request Building trait you have access to its mini-DSL for convenient and concise request
construction. 1

ROUTE is an expression evaluating to a spray-routing Route. You can specify one inline or simply refer to the route
structure defined in your service.

The final element of the ~> chain is a check call, which takes a block of assertions as parameter. In this block you
define your requirements onto the result produced by your route after having processed the given request. Typically
you use one of the defined “inspectors” to retrieve a particular element of the routes response and express assertions
against it using the test DSL provided by your test framework. For example, with specs2, in order to verify that your
route responds to the request with a status 200 response, you’d use the status inspector and express an assertion
like this:

status mustEqual 200

The following inspectors are defined:

1 If the request URI is relative it will be made absolute using an implicitly available instance of DefaultHostInfo whose value is
“http://example.com” by default. This mirrors the behavior of spray-can which always produces absolute URIs for incoming request based on
the request URI and the Host-header of the request. You can customize this behavior by bringing an instance of DefaultHostInfo into scope.

5.9. spray-testkit 165

http://etorreborre.github.com/specs2/
http://example.com


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Inspector Description
body:
HttpEntity.NonEmpty

Returns the contents of the response entity. If the response entity is empty a
test failure is triggered.

charset: HttpCharset Identical to contentType.charset
chunks:
List[MessageChunk]

Returns the list of message chunks produced by the route.

closingExtension:
String

Returns chunk extensions the route produced with a
ChunkedMessageEnd response part.

contentType:
ContentType

Identical to body.contentType

definedCharset:
Option[HttpCharset]

Identical to contentType.definedCharset

entity: HttpEntity Identical to response.entity
handled: Boolean Indicates whether the route produced an HttpResponse for the request. If

the route rejected the request handled evaluates to false.
header(name: String):
Option[HttpHeader]

Returns the response header with the given name or None if no such header
can be found.

header[T <:
HttpHeader:
ClassTag]: Option[T]

Identical to response.header[T]

headers:
List[HttpHeader]

Identical to response.headers

mediaType: MediaType Identical to contentType.mediaType
rejection: Rejection The rejection produced by the route. If the route did not produce exactly one

rejection a test failure is triggered.
rejections:
List[Rejection]

The rejections produced by the route. If the route did not reject the request a
test failure is triggered.

response:
HttpResponse

The HttpResponse returned by the route. If the route did not return an
HttpResponse instance (e.g. because it rejected the request) a test failure
is triggered.

responseAs[T:
Unmarshaller:
ClassTag]: T

Unmarshals the response entity using the in-scope
FromResponseUnmarshaller for the given type. Any errors in the
process trigger a test failure.

status: StatusCode Identical to response.status
trailer:
List[HttpHeader]

Returns the list of trailer headers the route produced with a
ChunkedMessageEnd response part.

5.9.4 Sealing Routes

The section above describes how to test a “regular” branch of your route structure, which reacts to incoming requests
with HTTP response parts or rejections. Sometimes, however, you will want to verify that your service also translates
Rejections to HTTP responses in the way you expect.

You do this by wrapping your route with the sealRoute method defined by the HttpService trait. The
sealRoute wrapper applies the logic of the in-scope ExceptionHandler and RejectionHandler to all exceptions
and rejections coming back from the route, and translates them to the respective HttpResponse.

The on-spray-can examples defines a simple test using sealRoute like this:

"return a MethodNotAllowed error for PUT requests to the root path" in {
Put() ~> sealRoute(demoRoute) ~> check {
status === MethodNotAllowed
responseAs[String] === "HTTP method not allowed, supported methods: GET, POST"

}

166 Chapter 5. Documentation



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

}

5.9.5 Examples

A full example of how an API service definition can be structured in order to be testable with spray-testkit and without
actor involvement is shown with the on-spray-can example. This is its test definition.

Another great pool of examples are the tests for all the predefined directives in spray-routing. They can be found here.

5.10 spray-util

The spray-util module contains a number of smaller helper classes that are used by all other spray modules, except
spray-http, which is kept intentionally free of other spray dependencies.

5.10.1 Dependencies

Apart from the Scala library (see Current Versions chapter) spray-util only depends on akka-actor (with ‘provided’
scope, i.e. you need to pull it in yourself).

5.10.2 Installation

The Maven Repository chapter contains all the info about how to pull spray-util into your classpath.

Afterwards just import spray.util._ to bring all relevant identifiers into scope.

5.10.3 Configuration

Just like Akka spray-util relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf, in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-util module:

####################################
# spray-util Reference Config File #
####################################

# This is the reference config file that contains all the default settings.
# Make your edits/overrides in your application.conf.

spray {

# Always contains the deployed version of spray.
# Referenced, for example, from the `spray.can.server.server-header` setting.
version = "<VERSION>"

}

5.10. spray-util 167

https://github.com/spray/spray/blob/master/examples/spray-routing/on-spray-can/src/test/scala/spray/examples/DemoServiceSpec.scala
https://github.com/spray/spray/tree/release/1.1/spray-routing-tests/src/test/scala/spray/routing
https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

5.10.4 Pimps

spray-util provides a number of convenient “extensions” to standard Scala and Akka classes.

The currently available pimps can be found here. Their hooks are placed in the spray.util package object, you
bring them in scope with the following import:

import spray.util._

Side Note

Even though now officially somewhat frowned upon due to its arguably limited PC-ness we still like the term “pimps”
for these, since it honors the origins of the technique (the “pimp-my-library” pattern, as it was originally coined by
Martin Odersky in a short article in late 2006) and provides a very succinct and, in the scala community, well-known
label for it.

5.10.5 LoggingContext

The LoggingContext is a simple akka.event.LoggingAdapter that can always be implicitly cre-
ated. It is mainly used by spray-routing directives, which require a logging facility for an implicitly available
ActorRefFactory (i.e. ActorSystem or ActorContext).

168 Chapter 5. Documentation

https://github.com/spray/spray/tree/release/1.1/spray-util/src/main/scala/spray/util/pimps
https://github.com/spray/spray/blob/master/spray-util/src/main/scala/spray/util/package.scala
http://www.artima.com/weblogs/viewpost.jsp?thread=179766


CHAPTER 6

Project Info

6.1 Current Versions

Since spray heavily depends on Akka its releases are usually closely tied to specific Akka versions.

6.1.1 0.9.0

This version targets Scala 2.9.x and Akka 1.3.x and is therefore not recommended for new projects anymore. Its
documentation doesn’t live here but in the (old) github wiki.

6.1.2 1.0.1

This is the latest version targeting Scala 2.9.3 and Akka 2.0.5. Its sources live in the release/1.0 branch of the spray
repository.

6.1.3 1.1.3 / 1.2.3 / 1.3.3

The current and stable spray release is a triple release, targeting both Scala 2.10 and Scala 2.11 as well as three Akka
versions at the same time.

Please choose 1.1.3, 1.2.3 or 1.3.3 depending on what Scala/Akka version you are targeting:

• spray 1.1.3 is built against Scala 2.10.5 and Akka 2.1.4.
Its sources live in the release/1.1 branch of the spray repository.

• spray 1.2.3 is built against Scala 2.10.5 and Akka 2.2.5.
Its sources live in the release/1.2 branch of the spray repository.
(Please note that Akka 2.2.3 or later is required, earlier Akka versions will not work!)

• spray 1.3.3 is built against Scala 2.10.5 and Akka 2.3.9 as well as Scala 2.11.6 and Akka 2.3.9.
Its sources live in the release/1.3 branch of the spray repository.
Note: Contrary to version 1.1.3 and 1.2.3 the 1.3.3 release is published with crosspaths enabled
since it targets two Scala versions at the same time!

For information about where to find the spray artifacts please check out the Maven Repository chapter.

169

http://akka.io
https://github.com/spray/spray/wiki
https://github.com/spray/spray/tree/release/1.0
https://github.com/spray/spray/tree/release/1.1
https://github.com/spray/spray/tree/release/1.2
https://github.com/spray/spray/tree/release/1.3


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

6.1.4 Shapeless Versions

If you want to use shapeless as well as spray-routing in your application you need to select the version of spray(-
routing) that was built against the shapeless release which you’d like to use.

• For shapeless 1.2.4 you should use spray 1.1.3, 1.2.3 or 1.3.3 and the spray-routing module.

• For shapeless 2.0.0 you should use spray 1.3.2 (Scala 2.10 or Scala 2.11) and the spray-routing-shapeless2
module instead of spray-routing.

• For shapeless 2.1.0 you should use spray 1.3.3 (Scala 2.10 or Scala 2.11) and the spray-routing-shapeless2
module instead of spray-routing.

6.1.5 Nightly Builds

If you’d like to have access to the most recent changes and additions without having to build spray yourself you can
rely on the nightly builds, which we are currently publishing for the release/1.0, release/1.1, release/1.2 and release/1.3
branches of the spray repository. Every day shortly past midnight UTC a new build is made available unless the
respective branch has not seen any new commits since the last build.

In order to help you identify the exact commit from which a build is cut every artifact directory includes a
commit-<version>.html file containing the commit hash with a link to the commit on github.

Nightly builds are available from the http://nightlies.spray.io repository.

6.2 Migration from M8

6.2.1 Big breaking changes

Replacement of HttpBody by HttpData

HttpBody was completely replaced by HttpData. HttpData is a data structure that abstracts over either
ByteString buffers (HttpData.Bytes), data from files (HttpData.FileBytes), and combinations of both
(HttpData.Compound). This allows spray-can to combine both heap byte buffers and data from files without ever
having to load file data into a heap buffer. The companion object of HttpEntity contains lots of overloaded apply
methods to create an HttpEntity without having to deal with HttpData directly.

Authentication

Authentication rejections were remodelled. There’s now only one rejection type,
AuthenticationFailedRejection, that contains a cause (CredentialsMissing or
CredentialsRejected) and a list of headers to add to the response as a challenge for the client. Previ-
ously, challenge generation wasn’t handled uniformly and challenges weren’t generated at all in some cases. For your
custom authenticator, you now have to generate the challenge headers directly in the ContextAuthenticator
implementation. HttpAuthenticator now has a new abstract method to implement to return challenge headers.

Chunking support

With request chunk aggregation turned off (spray.can.server.request-chunk-aggregation-limit
= 0) spray-can will deliver request chunks as is to the user-level handler. Previously, all chunks of a request came
in subsequently without any interaction needed from the handler. Now the ChunkedRequestStart message has
to be acknowledged with a RegisterChunkHandler message which contains the ActorRef of an actor to handle

170 Chapter 6. Project Info

https://github.com/milessabin/shapeless
https://github.com/milessabin/shapeless
https://github.com/milessabin/shapeless
https://github.com/milessabin/shapeless
https://github.com/milessabin/shapeless
https://github.com/spray/spray/tree/release/1.0
https://github.com/spray/spray/tree/release/1.1
https://github.com/spray/spray/tree/release/1.2
https://github.com/spray/spray/tree/release/1.3
http://nightlies.spray.io


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

the chunks before any actual MessageChunks will be delivered. This allows to separate the handling of multiple
incoming request chunk streams to several chunk handlers.

PathMatcher infrastructure

The path matching infrastructure was changed by replacing automatic behavior with more explicit directives. Mainly,
this affects uses of nested path("") directives. Previously, path("") would either match 1) nothing, 2) a single
slash, or 3) two slashes before the path end. Since the question of whether to deliver identical content under two
different URIs (adding a trailing slash to a URI results in a semantically different URI!) is one of continuous discussion
(see for example: http://googlewebmastercentral.blogspot.de/2010/04/to-slash-or-not-to-slash.html) we want to make
it easy for your to pick your strategy and be consistent about it. With the new version, you can use one of the new
directives instead of path("") to be explicit about what to match:

• pathEnd, which matches just the path end without any trailing slashes

• pathSingleSlash, which matches the path only when it ends with a slash

• pathEndOrSingleSlash, which matches in both cases

Directives path and pathPrefix previously matched an optional beginning slash from the (remaining) path. The
beginning slash is now required. If that’s not what you want use rawPathPrefix instead.

Also:

• PathMatcher.Slash replaces the old PathMatcher.Slash_! which matches exactly one slash.

• PathMatcher.PathEnd now matches exactly the end of the path (before: an optional slash as well).

• PathMatcher.Segments also doesn’t match a trailing slash any more.

• PathMatcher.Empty was renamed to PathMatcher.Neutral.

It is now easy to create path matchers for optional or repeated matches. Use PathMatcher.? to make a
PathMatcher optional. Use PathMatcher.repeat to capture several matches.

(Un)marshalling

(TODO)

• Introduction of ToResponseMarshaller etc.

• RequestContext.complete overloads gone

• CompletionMagnet gone

6.2.2 Comprehensive list of breaking changes

The following list is an annotated version of all commits that were marked as breaking (!) since M8. You may find
additional information on how to fix broken code by looking into the linked commits. Changes are often accompanied
with test changes that show how code can be fixed.

spray-cache

• ExpiringLruCache uses Duration instead of Long for timeouts 2394720.

• LruCache.apply doesn’t allow Duration.Zero any more but Duration.Inf, instead, for not speci-
fying any timeout 2394720.

2394720 use util.Timestamp in ExpiringLruCache

6.2. Migration from M8 171

http://googlewebmastercentral.blogspot.de/2010/04/to-slash-or-not-to-slash.html
http://github.com/spray/spray/commit/2394720


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

spray-can

Server-side changes:

• Http handlers must answer ChunkedRequestStart message with RegisterChunkHandler command
(see chunking support) [d738e54]

• ServerSettings timeout settings were moved into a separate class 9193318.

Client-side changes:

• new member HostConnectorSettings.maxRedirects to enable automatic redirection handling on
the client side [98365ff]

• spray.can.client.user-agent-header vs. specifying a custom User-Agent header behavior
changed: a custom User-Agent header now always overrides any configuration setting. The setting is used
when there’s no custom header specified [6fec00c].

• Connection failure and request timeout now produce dedicated exceptions on the client side [4b48875].

• HostConnectorSettings.connectionSettings are now read from spray.can.client instead
of from spray.can.host-connector.client [9abbcf6].

• spray.can.client.ssl-encryption is gone. Instead, Http.Connect got a new
sslEncryption parameter replacing the global setting. [e922cd4].

• HostConnectorSetup must now be created from hostname and port. Before it was created from an
InetSocketAddress which wasn’t enough to distinguish virtual hosts [a47f3b0].

Other changes:

• keepOpenOnPeerClosed is not supported for Http and was removed from Http.Register [f6b0292].

• ClientConnectionSettings and ServerSettings got a new member
maxEncryptionChunkSize [0b5ef36].

• Lots of formerly public types belonging to spray’s private API were marked as such [da29cdf].

• spray.can.server.response-size-hintwas adapted to spray.can.server.response-header-size-hint.
The same for spray.can.client.request-size-hint [ba1ae77].

• Content-Length.length is now a Long value. Also spray.can.server.parsing.max-content-length
and incoming-auto-chunking-threshold-size [b2fee8d].

• SetIdleTimeout command now always resets the timeout [ab17f00].

• SslTlsSupport pipeline stage now publishes a SSLSessionEstablished event with session details
[80982d4].

• New ParserSettings.sslSessionInfoHeader setting which enables the automatic addition of a syn-
thetic SSL-Session-Info header to a request/response with SSL session information [e486900].

• ClientConnectionSettings.userAgentHeader is now modelled directly by an
Option[User-Agent]. [da12531].

spray-http

• Access-Control-Allow-Origin and Origin header models now have members of newly introduced
type HttpOrigin instead of the previous Uri which didn’t completely match the model [015f3c6].

• Renderer.seqRenderer and related signatures changed [e058a43].

9193318 break out ServerSettings timeout settings into sub case class, closes #489

172 Chapter 6. Project Info

http://github.com/spray/spray/commit/9193318


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• in Uri.Query a ’=’ is rendered even for empty values unless the special value Query.EmptyValue is
used. Also, a query parsed from ?key= will now be rendered the same way (previously, a trailing ’=’ was
always stripped) [d2b8bba].

• (Multipart)FormData.fields are now represented as Seq to be able to model duplicate fields
[ad593d1].

• HttpMessage.entityAccepted was renamed to HttpMessage.isEntityAccepted [5d78dae].

• Replacement of HttpBody by HttpData [c6f49cc].

• Many charsets in HttpCharsets are not any more available as static values. Use
HttpCharset.getForKey("windows-1252") to access a particular charset [f625b5a].

• Uri.Query.apply and Uri.Host.apply have a new charset parameter [88a25f7].

• Uri.Query has a new subtype Uri.Query.Raw which will be generated when parsing with mode
Uri.ParsingMode.RelaxedWithRawQuery [d8a9ee4].

• MediaRanges.custom was renamed to MediaRange.custom [a915b8f].

• HttpSuccess and HttpFailure are not public API any more. Use StatusCode.isSuccess instead
[a9e0d2c].

• HttpIp was replaced by RemoteAddress which also supports “unknown” addresses.
X-Forwarded-For.ips member was renamed to addresses. Remote-Address.ip member
was renamed to address [443b0d8].

spray-routing

• RequestContext.complete overloads were removed in favor of using the marshalling infrastructure (see
(Un)marshalling) [4d787dc].

• CompletionMagnet is gone in favor of the new ToResponseMarshaller infrastructure [7a36de5].

• FieldDefMagnetAux, ParamDefMagnetAux, and AnyParamDefMagnetAux are gone and replaced
by a simpler construct [d86cb80].

• RequestContext.marshallingContext is gone. produce directive loses its status and header
parameter which can be replaced by using an appropriate ToResponseMarshaller [b145ced].

• AuthenticationFailedRejection now directly contains challenge headers to return. There’s no need
to implement a (fake) HttpAuthenticator to make use of the rejection (see Authentication) [9c9b976].

• FileAndResourceDirectives.withTrailingSlash and fileSystemPath are now private
[ab35761].

• decompressRequest and compressResponse now always need parentheses. Also, encoding directives
like the compressResponse automatically use the autoChunkFileBytes directives to avoid having to
load potentially huge files into memory [e3defb4].

• (h)require directives can now take several rejections instead of an Option of only one [9c11228].

• detachTo is gone in favor of detach() which always needs parentheses. The underlying implementation is
now Future-based and needs an (implicit or explicit) ExecutionContext or ActorRefFactory in scope
[ead4a70].

• PathMatcher.(flat)Map were renamed to PathMatcher.h(flat)Map. map and flatMap were
reintroduced for PathMatcher1 instances [8c91851].

• AuthenticationFailedRejection and AuthenticationRequiredRejection were merged
and remodelled. [034779d]

6.2. Migration from M8 173



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• PathMatchers.Empty was renamed to PathMatchers.Neutral [ee7fe47].

• Slash_! is gone and Slash got its semantics. PathEnd now just matches the end of the path.
PathDirectives were adapted to have the same semantics as before [1480e73].

• UserPassAuthenticator.cached was renamed to CachedUserPassAuthenticator.apply
1326046.

• PathMatcher.apply now takes a Path prefix instead of a String [3ff3471].

• PathMatcher.Segments doesn’t match trailing slashes anymore. Implicit infrastructure for
PathMatcher.? was changed [8ee49d7].

• pathEnd and pathEndOrSingleSlash were introduced to replace the former path("") (see PathMatcher
infrastructure) [f0cbf25].

spray-httpx

(TODO)

• [ae17d18]

• [9d27559]

• [fad2ff2]

• [f8f5b6d]

• [ebaa580]

• [ebe3e97]

• [dd51be5]

• [f5b1535]

• [adf9170]

• [f5997f8]

spray-io

(TODO)

• [01c4aa9]

• [5f23219]

• [76345ba]

• [2c77d8f]

spray-testkit

(TODO)

• [6a99cb7]

• [72c9397]

• [680fde0]

1326046 move UserPassAuthenticator.cached to CachedUserPassAuthenticator.apply, fixes #352

174 Chapter 6. Project Info

http://github.com/spray/spray/commit/1326046


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• [3b4ac55]

spray-util

(TODO)

• [e234dd9]

• [b0b90b3]

• The settings infrastructure was reworked. XxxSettings.apply(config: Config) now takes the root
config instead of the subconfig. For the old behavior use the new fromSubConfig instead [78d7e4a].

6.3 Maven Repository

The latest spray releases are available from Maven Central, so no special resolver should be required to be able to pull
them in. In addition, older artifacts (including milestones and RCs) are hosted in this repository:

http://repo.spray.io

If you use SBT you’ll want to add the following resolver:

resolvers += "spray repo" at "http://repo.spray.io"

Nightly builds are available from http://nightlies.spray.io, to use them add this resolver:

resolvers += "spray nightlies repo" at "http://nightlies.spray.io"

6.3.1 Artifact Naming

All spray artifacts follow this naming scheme:

Group ID io.spray

Artifact ID Module Name

Version Release Version

So, for expressing a dependency on a spray module with SBT you’ll want to add something like this to your project
settings:

libraryDependencies += "io.spray" % "spray-can" % "1.x.x" // versions 1.1.x and 1.2.x

or (note the %%):

libraryDependencies += "io.spray" %% "spray-can" % "1.3.x"

Make sure to replace the artifact name and version number with the one you are targeting! (see Current Versions)

6.4 Contributing

We value all kinds of contributions from the community, not just actual code. Maybe the easiest and yet very good
way of helping us improve spray is to ask questions, voice concerns or propose improvements on the Mailing List.
Or simply tell us about you or your organization using spray by sending us a small statement for inclusion on the
References page.

6.3. Maven Repository 175

http://search.maven.org/
http://repo.spray.io
http://www.scala-sbt.org/
http://nightlies.spray.io
http://www.scala-sbt.org/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

If you do like to contribute actual code in the form of bug fixes, new features or other patches this page gives you more
info on how to do it.

6.4.1 Building spray

Since spray is open-source and hosted on github you can easily build it yourself.

Here is how:

1. Install SBT (the master branch is currently built with SBT 0.12.3).

2. Check out the spray source code from the github repository. Pick the branch corresponding to the version you
are targeting (check the Current Versions chapter for more info on this).

3. Run sbt compile test to compile the suite and run all tests.

6.4.2 Contributing documentation

The site, i.e. what you see here at http://spray.io, is built with spray itself. It uses sphinx to generate documentation
from reStructured text files located in the docs folder of the spray checkout. The documentation is served from the
site sub-project of the sbt build. If you want to contribute documentation make sure you can build and view the site
locally. Follow these instructions to get the site project working locally:

• Follow the instructions in the above section about building spray.

• Install sphinx (in Debian / Ubuntu install the python-sphinx package, for OS/X see this mailing list thread).

• Find the path of sphinx-build (in Ubuntu it’s probably /usr/bin/sphinx-build)

• Set the SPHINX_PATH environment variable to that path.

• Run sbt

• In the sbt shell use project site to change into the site project.

• Use compile to build the site, this will take some time when running for the first time (~ 1 - 3 minutes).

• Use re-start 1 to start the local site server.

• Browse to http://localhost:8080

• Use ~ products in sbt to let it monitor changes to the documentation sources automatically.

• Edit the documentation files inside the docs subdirectory. After saving a file, it will be automatically picked
up by sbt, then it will be regenerated and be available in the browser after ~ 1 - 5 seconds with a refresh of the
page.

6.4.3 git Branching Model

The spray team follows the “standard” practice of using the master branch as main integration branch, with WIP-
and feature branches branching of it. The rule is to keep the master branch always “in good shape”, i.e. having it
compile and test cleanly.

Additionally we maintain release branches for older and possibly future releases.

1 re-start is a task from the sbt-revolver plugin which starts a project in the background while you can still use the sbt shell for other tasks.

176 Chapter 6. Project Info

http://www.scala-sbt.org/
http://www.scala-sbt.org/
https://github.com/spray/spray/
http://spray.io
http://sphinx-doc.org/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/
https://groups.google.com/d/msg/spray-user/x2PJUYkn1Vs/JxhT_rRoJS0J
http://localhost:8080
https://github.com/spray/sbt-revolver


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

6.4.4 git Commit Messages

We follow the “imperative present tense” style for commit messages (more info here) and begin each message with
the module name(s) touched by the commit followed by a colon. Additionally, in order to make it easier for us (and
everyone else) to track the effects of changes onto the public API we also explicitly classify every commit into exactly
one of three categories:

Cate-
gory

Description Marker

Neu-
tral

Only touches things “under the hood” and has no effect on spray’s public API. =

Ex-
tend-
ing

Extends the API by adding things. In rare cases this might break code due to things like
identifier shadowing but is generally considered a “safe” change.

+

Break-
ing

Changes or removes public API elements. Will definitely break user code relying on these parts
of the API surface.

!

Apart from the actual Scala interfaces the public API surface covered by these categories also includes configuration
settings (most importantly the reference.conf files).

The category that a commit belongs to is indicated with a respective marker character that the commit’s message must
start with (followed by a space char), e.g. = testkit: clean up imports. Note that all commits must
carry exactly one of the markers listed in the table above, with one exception: merge commits that don’t introduce any
changes themselves do not have to carry a marker. Instead, they start with “Merge”. Requiring the marker makes sure
that the committer has actively thought about the effects of the commit on the public API surface.

Also, all commits in the “Extending” and especially in the “Breaking” category should contain a dedicated para-
graph (in addition to the summary line) explaining in what way the change breaks the API and why this is neces-
sary/beneficial. These paragraphes form the basis of release-to-release migration guides.

6.4.5 Issue Tracking

Currently the spray team uses the Issues Page of the projects github repository for issue management. If you find a
bug and would like to report it please go there and create an issue.

If you are unsure, whether the problem you’ve found really is a bug please ask on the Mailing List first.

6.4.6 Contributor License Agreement (CLA)

Contributions to the project, no matter what kind, are always very welcome. However, we would like to make sure
that we as the project maintainers as well as the contributors are properly covered with regard to the legal aspects of
their contributions. This is why we can only accept patches if the patch is your original work and you license your
work to the spray project under the project’s open source license.

In order the provide a proper legal foundation for this we need to ask you to sign our CLA, which is a direct adaptation
of the Apache Foundation’s Individual Contributor License Agreement V2.0.

If you have not already done so, please download, complete and sign a copy of the CLA and then scan and email us a
PDF file! If you prefer you can also snail-mail us the original, please ask for the mailing address.

6.4.7 Pull Requests

If you’d like to submit a code contribution please fork the github repository and send us pull request against the
master branch (or the respective release branch, depending on what version your patch is targeting). Please keep in

6.4. Contributing 177

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://github.com/spray/spray/issues
https://github.com/spray/spray/
http://www.apache.org/licenses/icla.txt
https://github.com/spray/spray/
https://help.github.com/articles/creating-a-pull-request


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

mind that we might ask you to go through some iterations of discussion and refinements before merging and that you
will need have signed a CLA first!

6.5 Changelog

6.5.1 Version 1.1.3 (2015-03-24)

• spray-can:

– fix server-side IllegalStateException when pipelining-limit > 1 (#958)

– preserve order of headers during message parsing (#961)

– introduce spray.can.server.verbose-error-logging settings (#977)

– allow user-specified Content-Length for unchunked responses to non-transparent HEAD requests (#965)

– fix chunked response to non-transparent HEAD request rendering Content-Length: 0 (#964)

• spray-http:

– fix handling of empty authority in Uris (#1014)

– make spray.http.RangeUnit.Bytes a case object (#954)

– add Uri::toHttpRequestTargetOriginForm (#1019)

– catch ‘IllegalArgumentException‘s early when parsing headers (#992)

– fix bug in Authentication header parser rules (#1006)

• spray-httpx:

– switch XML parser to safer default settings to prevent XXE attacks

– make MultipartsMarshallers.multipartPartsMarshaller public (#998)

– fix NoEncodingCompressor (#936)

• spray-io:

– fix SSL/TLS encryption stopping processing in certain renegotiation scenarios (#1010)

– fix unnecessary reverse DNS query when connecting by IP with SSL/TLS (#993)

• spray-routing:

– replace usages of asInstanceOf in NumberMatcher (#959)

– fix incorrect behavior of anyParam(s) directive with default values (#981)

• upgraded to latest versions of all dependencies where easily possible

• smaller fixes and improvements across the board (e.g. error messages and scaladocs)

6.5.2 Version 1.1.2 (2014-10-08)

• spray-caching:

– add API for accessing cache key set

• spray-can:

– add support for rendering of ‘Connection: Upgrade’ response header

178 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– fix incorrect error message in response parser

– prevent URIs with non-http scheme earlier in request-level client API (#879)

– add support for Transfer-Encoding: identity in server and client (#861)

– fix StackOverflowException in spray.can.rendering.toTcpWriteCommand (#877)

• spray-http:

– fix URI encoding of non-BMP chars

– fix Cache-Control directives parser (#862)

– change Uri.Query rendering to also encode semicolons

– add missing alias for US-ASCII charset

– add q-Value to LanguageRange (#838)

– accept comma as cookie separator (#869)

– allow 0 as special value If-Modified-Since and similar headers (#942)

– remove obsolete LinkDirective model

• spray-httpx:

– unwrap MalformedContent error in ResponseTransformation

– add support for new Play twirl with PlayTwirlSupport (#887)

– change default charset for FormData marshalling to UTF-8

– improve encoding of FormData fields

– allow encoding of chunked message with empty-entity Chunked*Start (#852)

– accept illegal headers in multipart parts as RawHeader instances (#859)

– make multipart unmarshaller strip Content-Type header (#875)

• spray-routing:

– fix listDirectoryContents not rendering line separators (#831)

– fix logging users LDAP passwords on error

– fix OSGi import package statement (wrt. spray-caching, spray-can, spray-io and shapeless)

– fix UnsupportedOperationException in PathMatchers.valueMap2PathMatcher

• spray-util:

– remove unnecessary reflection in PimpedRegex::groupCount

6.5.3 Version 1.1.1 (2014-03-14)

• spray-can:

– fix redirects not reusing same connection (#719)

– add spray.can.{client,server}.ssl-tracing flag to turn on SslTlsSupport DEBUG logging (#750)

– enabled redirection for any 307 responses

– avoid parsing attempt after complete input has been consumed

– don’t require use of CommandWrapper with SetRequest/TimeoutTimeout (#731)

6.5. Changelog 179



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– don’t crash if responder to HttpRequest is null (#788)

– abort connection on client-side request timeout (#785)

– add client-side support for Raw-Request-URI header (#654)

– dispatch acks for MessageChunk/ChunkedMessageEnd to sender (#773)

• spray-http:

– add models for Allow, Link, If-(None-)-Match, If-(Un)Modified-Since, If-Range, ETag, Last-Modified,
Content-Range and Range headers

– add image/webp media type (#809)

– fix relative URI resolution (#740)

– render Cookies as cookie-pairs in Cookie-headers (ignore other attributes)

– fix broken MediaRange::isXXX implementations (#804)

– improve DateTime from-String parsing to also support full ISO8601 strings

• spray-httpx:

– fix Json4sSupport and Json4sJacksonSupport to not extend from MetaMarshaller

– always use ROOT locale for xml parsing exceptions

– marshal an empty Stream into a response with an empty entity (#789)

– allow UrlEncodedFormDataUnmarshaller to extract duplicate fields (#823)

• spray-io:

– drop exception (debug logged) in SslTlsSupport during finishClose (#823)

– fix BackPressureHandling losing acks in particular situations (#798)

– try to ignore/tone down warnings in BackPressureHandling (#771)

• spray-routing:

– add CacheConditionDirectives (conditional directive)

– add conditional support to FileAndResourceDirectives

– add RangeDirectives and UnsatisfiableRange rejection

– add range support to FileAndResourceDirectives

– add (optional)headerValueByType directive

– add filter/hfilter to Directive

– add Allow header to method rejections

– add missing support for RequiredValueReceptacles in formField and anyParam directives (#754)

– handle exceptions in onComplete directive

– better failure msg when binding in SimpleRoutingApp.startServer fails (#819)

• spray-servlet:

– introduce root-path = AUTO and make it the default (#701)

– add termination awaiting to Initializer::contextDestroyed

• spray-testkit: allow overriding of ActorSystem creation in RouteTest (#786)

180 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• spray-util:

– make testing agnostic to native newline characters (#632)

– replace underscore with hyphen in Utils.actorSystemNameFrom (#786)

6.5.4 Version 1.1.0 (2013-11-29)

• spray-http: added some more helpers around form data and BodyPart construction

• spray-io:

– fixed Terminated dead letters from IO layer (#704)

– fixed Tcp.SO.reuseAddress not being applied for outgoing connections (#712)

• spray-routing:

– fixed problem with compressResponseIfRequested allowing unused parameters

• spray-testkit: added NoAutoHtmlLinkFragments helper trait

6.5.5 Version 1.1-RC4 (2013-11-20)

• spray-can:

– fixed occasional DeathPactException in HttpHostConnector (#699)

• spray-io:

– fixed SslTlsSupport sending out multiple acks in some cases (#689)

– fixed noisy DeathPactException when connection attempt fails (#692)

– added verification of correct clientMode of SSLEngines created by *SSLEngineProvider.fromFunc (#657)

• spray-routing:

– made FutureDirectives and authenticate(Future) parameters call-by-name (#694)

– applied small change as a workaround for http://youtrack.jetbrains.com/issue/SCL-6214

6.5.6 Version 1.1-RC3 (2013-11-13)

• spray-can:

– fixed IllegalStateException (“Unexpected slot state: Idle”) in host-level API (#652)

– fixed client-side request-timeout not cancelled after receiving ChunkedResponseStart (#670)

– fixed negative ‘openConnections’ in StatsSupport (#666)

– fixed possible excessive memory use when parsing incoming chunked messages (#662)

– fixed server sometimes sending events to wrong receivers

– improved “Cannot establish effective request URI” error message

• spray-http:

– fixed OAuth2 bearer token parser problem (#671)

– added q-value support to HttpCharset and HttpEncoding

6.5. Changelog 181

http://youtrack.jetbrains.com/issue/SCL-6214


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– improved content negotiation logic (#677)

– made auth scheme and “realm” parameter parsing case-insensitive (#668)

– smaller fixes

• spray-httpx:

– fixed TwirlSupport XML marshalling

– added DelegatingToResponseMarshallingContext and withEntityMapped/withResponseMapped helpers

• spray-io:

– fixed IllegalStateExceptions in SslTlsSupport (#667)

• spray-routing:

– fixed HttpService::runRoute not handling ConnectionClosed events (#675)

– fixed listDirectoryContents producing incorrect links when under pathPrefix (#684)

– added parameterless / modifier for PathMatcher

• spray-util:

– fixed SimpleStash to also stash message senders

6.5.7 Version 1.1-RC2 (2013-10-30)

• spray-can:

– changed ClientConnectionSettings::userAgentHeader from String to Option[‘User-Agent]‘ (#458)

– relaxed parser to allow several identical Content-Type headers (#463)

– improved HttpHostConnector for better performance with large numbers of connections (#643)

• spray-http:

– fixed DateTime to allow years up to 9999 (#502)

– fixed exception leaking from HttpCharset.custom (#637)

– remodeled HttpIp to RemoteAddress (#638)

• spray-httpx:

– made play dependency optional in OSGi Import-Package statement

– added MarshallerM helper type for abstracting over monadic marshallers

• spray-io:

– fixed broken inbound bytes buffering in SslTlsSupport (#633)

– removed too tight assertions, replaced remaining asserts (#631)

• spray-routing:

– changed path directive and Segments matcher to never match trailing slashes

– added pathEnd, pathSingleSlash and pathEndOrSingleSlash directive (#628)

– added PathMatcher::repeated modifier (#636)

182 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

6.5.8 Version 1.1-RC1 (2013-10-22)

• Upgraded to Scala 2.10.3 and latest versions of all dependencies

• spray-caching: added a size method to Cache[V]

• spray-can:

– “privatized” all classes/objects not meant to be part of public API

– replaced InetSocketAddress in HostConnectorSetup with hostname/port pair (#394)

– moved client.ssl-encryption setting from reference.conf into Http.Connect message (#396)

– when creating HostConnectorSettings expect client settings at spray.can.client (#408)

– introduced dedicated exceptions for connection failure and request timeout for host-level API

– made Content-Length a long value (#443)

– add auto-chunking for responses without content-length (#455)

– broke out ServerSettings timeout settings into sub case class (#489)

– change rendering of default User-Agent (#462)

– added support for custom status codes (#564)

– added explicit registration of chunk handler for incoming message chunks (#473)

– added client-side redirection following (#132)

– removed of Http.Register::keepOpenOnPeerClosed (#401)

– a ton of other fixes, additions and smaller improvements

• spray-http:

– added startsWith and dropChars method to Uri.Path model

– added support for Accept header extensions and media-type parameters (#310)

– fixed raw queries performing %-decoding and not being rendered as raw (#330)

– made only standard charsets available as constants (#340)

– added model for CORS headers

– allowed empty Host headers

– fixed Location header parsing to accept relative URIs (#484)

– introduced HttpData model replacing the byte array in HttpBody and MessageChunk (#365)

– added CONNECT method and support for custom HTTP methods (#428)

– added StatusCode::allowsEntity member

– made multipart form-data more flexible but have it adhere to the RFC more strictly

– introduced a distinction between ”?key=” and ”?key” in queries (#460)

– added effectivePort method on Uri

– many other fixes, additions and smaller improvements

• spray-httpx:

– flexibilized RequestBuilding and ResponseTransformation by generalizing the ~> operator

– added mapHeaders, removeHeader and removeHeaders to RequestBuilding

6.5. Changelog 183



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– moved unmarshal and unmarshalUnsafe to Unmarshaller object

– changed default StringMarshaller to prefer UTF-8 encoding over ISO-8859-1 (#498)

– added default marshallers for ByteString and HttpData

– changed default charset for application/x-www-form-urlencoded to UTF-8 (#526)

– added support for custom Content-Disposition headers

– added support for non-strict FormDataUnmarshaller

– added FromMessageUnmarshaller, FromRequestUnmarshaller and
FromResponseUnmarshaller

– extended MarshallingContext with support for specifying additional HTTP headers

– introduced ToResponseMarshaller and supporting infrastructure

– added Unmarshaller.oneOf to create negotiating Unmarshaller (#581)

– added support for play-json (un)marshalling

– many other fixes, additions and smaller improvements

• spray-io:

– upgraded to latest upstream Akka IO additions and fixes

– significantly improved SslTlsSupport (#544)

– smaller fixes, additions and improvements

• spray-routing:

– added headerValueByName(Symbol) and optionalHeaderValueByName(Symbol) over-
load

– added rejection parameter to Directive::hrequire and Directive::require

– added separateOnSlashes helper for PathMatchers (#334)

– moved UserPassAuthenticator.cached to CachedUserPassAuthenticator.apply
(#352)

– redefined PathMatchers.Empty as PathMatchers.Neutralwith explicit type annotation (#339)

– renamed PathMatcher.(flat)map => h(flat)map, introduced map/flatMap (#274)

– added detach directive which executes its inner route in a future, removed detachTo (#240)

– added scheme directives

– added PathMatchers.Segments which will match all remaining segments as List[String]

– added some higher-level compression/decompression directives

– added autoChunkFileBytes directive

– fixed getFromDirectory and getFromResourceDirectory not working properly for URIs with
encoded chars

– added requestInstance and requestUri directives (#525)

– removed layer of *Aux classes by type aliases for simplicity

– removed CompletionMagnet in favor of new ToResponseMarshaller

– removed superfluous RequestContext::complete overloads

184 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– added PathMatcher::? modifier, removed Slash_!

– many other fixes, additions and smaller improvements

• spray-servlet:

– added support for providing the javax.servlet.http.HttpServletRequest in a special header

– added illegal-header-warnings setting in analogy to spray-can (#553)

– added spray.servlet.uri-parsing-mode setting (#574)

– smaller fixes, additions and improvements

6.5.9 Version 1.1-M8 (2013-06-10)

• Upgraded to Scala 2.10.2, Akka 2.1.4 and latest versions of all dependencies

• general: added automatic source formatting via sbt-scalariform

• spray-caching: folded Cache.fromFuture into Cache.apply

• spray-can:

– migrated from old spray-io onto new akka-io

– completely rewrote client-side APIs for improved architecture and usability

– completely rewrote HTTP parser for cleanliness and much better performance

– rewrote HTTP renderer for cleanliness and performance

– many fixes, additions and smaller improvements

• spray-client:

– removed HttpConduit (now part of spray-can client-side APIs)

– moved HttpDialog from spray-can into spray-client

– adapted to new spray-can client layer

• spray-http:

– major refactoring for cleanliness and performance

– established serializability for all model classes

– added custom RFC3986-compliant URI model incl. fast parser

– many fixes, additions and smaller improvements

• spray-httpx:

– added marshaller for Try[T]

– added Json4s native and Json4S jackson support

– many fixes, additions and smaller improvements

• spray-io:

– migrated large majority of logic to new Akka I/O layer (for Akka 2.2)

– backported new Akka I/O layer from Akka 2.2 to Akka 2.1

– updated remaining logic

• spray-routing:

6.5. Changelog 185



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– added several new directives (most notably: FutureDirectives, AnyParamDirectives)

– many fixes, additions and smaller improvements

• spray-servlet:

– fixed NPE during exception handling using e.getMessage

– enabled dynamic timeout setting via SetRequestTimeout and SetTimeoutTimeout commands

– smaller improvements

• spray-util: many small fixes and improvements

6.5.10 Version 1.1-M7 (2012-12-19)

• Upgraded to Scala 2.10.0-RC5, Akka 2.1.0-RC6

• spray-can:

– fixed broken overridability of SprayCanHttpServerApp.system member

– fixed request rendering to not suppress custom Date headers

– fixed rendering of ‘Content-Length: 0’ request headers

– added option for tagging log messages with custom prefixes, closed #153

– added DefaultHttpClient extension, closed #166

– added explicit naming for connection actors

• spray-http:

– fixed non-public access to the HttpRequest URI and queryParams members through the ‘copy’ method

– added HttpMessagePart extractor

– improved Date header parser to allow UTC as well as GMT time zone label

– improved language-tag parser to also accept tags according to BCP 47, closed #168

• spray-httpx: changed JSON rendering to always be UTF-8 encoded

• spray-io:

– changed IOExtension.ioBridge to IOExtension.ioBridge()

– added option for tagging log messages with custom prefixes, closed #153

– added proper supervisor strategy for connection actors: stop (and close connection) on all exceptions

– improved enabling/disabling of encryption on the connection (SslTlsSupport)

– flexibilized connection tag provision

– changed IOClient.Connected events to be sent with connection actor as sender

• spray-routing:

– fixed rejection duplication in certain cases

– changed default marshalling encoding to UTF-8

– added SimpleRoutingApp trait

– added complete(Future[StatusCode]) overload

– added optionalHeaderValuePF directive

186 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– simplified and homogenized ExceptionHandler and RejectionHandler to both return Routes

• testkit: turned response MatchError into proper error message, closed #165

• util:

– introduced SprayActorLogging trait

– improved LoggingContext with configurability regarding logger name generation

– improved PimpedFuture.delay to accept implicit ActorRefFactory instead of ActorSystem

• examples:

– added simple-routing-app example

– renamed simple-on-jetty and simple-on-spray-can examples to on-jetty / on-spray-can resp.

• smaller fixes and improvements

6.5.11 Version 1.1-M6 (2012-11-30)

• Upgraded to Scala 2.10.0-RC3, Akka 2.1.0-RC3, parboiled 1.1.4, shapeless 1.2.3 and spray-json 1.2.3

• Added ‘is-local-ActorRef’ assertions across modules (where applicable)

• spray-can:

– removed superfluous ssl-encryption config setting from HttpClient

– increase default HttpServer pipelining-limit from 1 to 8

– introduced SprayCanHttpServerApp convenience trait, updated examples

– smaller performance improvements

• spray-http:

– added support for ‘Bearer’ scheme in Authorization header (OAuth 2.0), closes #155

– renamed ‘OtherHttpCredentials’ to ‘GenericHttpCredentials’

– improved MediaType model, added more default MediaTypes, closed #157

– improved warmup

– improved parser for ‘X-Forwarded-For’ header to also accept “unknown” elements

– added DateTime.fromIsoDateTimeString

• spray-httpx: made the (Un)marshaller[NodeSeq] also accept ‘application/xml’

• spray-io:

– turned IOBridge into Actor, added optional parallelism

– general refactoring for cleanliness and clarity

– improved flexibility of connection actor creation

– smaller performance improvements

• spray-routing:

– added Directive.recover and .recoverPF modifiers

– introduced HeaderDirectives trait, reworked and improved header extraction directives

– changed evaluation of ‘complete’ directive arguments to call-by-name

6.5. Changelog 187



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– fixed incomplete exception handling in Directive.unwrapFuture

– renamed getFromFileName directive to getFromFile

– introduced default, simple HttpServiceActor implementation

– smaller refactoring in PathMatcher API

• spray-servlet: fixed missing application of root-path setting

• spray-testkit: flexibilized ActorSystem provision for RouteTest, closed #162

• spray-util: changed log level of loggers installed via ‘installEventStreamLoggerFor’ from DEBUG to WARN-
ING

• smaller fixes and improvements

6.5.12 Version 1.1-M5 (2012-11-09)

• Upgraded to Scala 2.10.0-RC2 and Akka 2.1.0-RC2

• spray-can:

– fixed NPE in RequestChunkAggregation

– removed stray logging statement from RequestChunkAggregation

– fixed incorrect rendering of chunked responses to HEAD requests

• spray-http: fixed incorrect test for response encoding acceptance

• spray-httpx: removed dangerous StatusCodeMarshaller

• spray-io:

– improved logging of errors in the SslTlsSupport pipeline stage

– reworked connection closing, added ConfirmedClose reason, fixed #147

• spray-routing:

– added option for disabling automatic file-chunking

– removed HttpService.routingSettings method, provision of RoutingSettings now fully implicit

– renamed Directive.map and .flatMap to .hmap/.hflatMap, re-added .map and .flatMap pimps for single-
value directives

– improved HttpService ‘runRoute’ wrapper to also work in “sub-route” actors

– removed ‘filter’ directive, converted all applications to ‘extract(...).flatMap’

– added ‘pathTest’ directive

– improve rendering of directory listings

– changed default redirection type to ‘302 Moved Permanently’

– improved host directive

– added ‘dynamicIf’ directives

– improved and flexibilized DebuggingDirectives

– add ‘complete’ overload taking a single StatusCode parameter

• spray-can & spray-servlet: increased default idle and request timeouts to 120s and 30s respectively

• spray-testkit: improved provision of custom RouteTestTimeout

188 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• spray-util: added ‘installDebuggingEventStreamLoggers’ convenience helper

• smaller fixes and improvements

6.5.13 Version 1.1-M4 (2012-10-19)

• Upgraded to Scala 2.10.0-RC1 and Akka 2.1.0-RC1

6.5.14 Version 1.0-M4 (2012-10-19)

• Upgraded to parboiled 1.1.3 and spray-json 1.2.2

• routing: further flexibilized directive combination with StandardRoutes

• routing: (re)added ‘complete’ overload taking a Future[HttpResponse], closes #143

• routing: added new directives:

– unmatchedPath

– listDirectoryContents

– getFromBrowseableDirectory / getFromBrowseableDirectories

• smaller fixes and improvements

6.5.15 Version 1.0-M3 (2012-10-12)

Largest refactoring in the history of the project. Lots of breaking changes. Most importantly:

• Completely new documentation at http://spray.io

• Renamed group id from “cc.spray” to “io.spray”

• Renamed packages from “cc.spray...” to simply “spray...”

• Completely refactored suite module structure (from 4 to 10+1 modules)

• Improved naming of many identifiers across the board

• Completely new architecture underneath routing DSL

• Completely new Marshalling and Unmarshalling infrastructure

• ...

6.5.16 Version 1.0-M2 (2012-05-16)

• spray-io

– Added SslTlsSupport pipeline stage

– Fixed SetTimeout messages not working

– Fixed closing of already closed connections improperly handled

– Fixed bug in wiring of certain pipeline stages

– Dropped ‘confirm-sends’ config setting, added ‘ack:Boolean’ field to IoWorker.Send

– Renamed ‘SendCompleted’ event to ‘AckSend’

6.5. Changelog 189

http://spray.io


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– Made IoWorkerThread daemonic

– Improved pipeline architecture for reduced call stack depth

• spray-can

– Added SSL/TLS support to HttpServer and HttpClient

– Added ‘ack-sends’ setting to client and server config

– Added ‘transparent-head-requests’ server config setting

– Added HttpClient.SetRequestTimeout message

– Fixed HttpServer not handling ‘Expect: 100-continue’ headers

– Fixed HttpClient not properly handling HEAD requests to resources containing a message body

– Fixed #99 (getFromFile(Name) sometimes throws IllegalStateException when streaming file content)

– Fixed SetTimeout messages not working

– Enabled validity verification on HttpRequests and HttpResponses

– Extended HttpDialog to also accept ActorContexts as dispatcher container

• spray-base

– http: fixed custom mediatypes not being matched

– http: fixed ArrayIndexOutOfBoundsException during header parsing of unregistered CustomMediaTypes

– http: fixed IPv6 Host header parsing failure

– Fixed #108 (FormDataUnmarshaller should be more resilient)

– Fixed incorrect error message in HttpContentExtractor

– Fixed several memory leaks in streamMarshaller

• spray-server

– Fixed actorSystem dependency in DebuggingDirectives incorrectly named

– Make ErrorHandling#responseForException public

• spray-client

– Improve ‘unmarshal’ pipeline step to accept all 2xx responses instead of only 200

• general

– Added basic, but still incomplete, sphinx-based documentation system for new spray website

– Upgraded to Akka 2.0.1

– Extended simple-http-server and simple-http-client examples with optional SSL/TLS support

– Fixed EOL related test failures on Windows

– Lots of smaller fixes and improvements

6.5.17 Version 1.0-M1 (2012-04-05)

• Moved spray-can sources into spray codebase

• Added spray-io component (and spray-util for common code)

• Upgraded all components and examples to Akka 2.0

190 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

6.5.18 Version 0.9.0 (2012-03-07)

• Fixed another problem in the request retry logic (spray-client)

• Fixed incorrect response status code for authentication failures with invalid credentials

• Fixed “LruCache implementations also caching exceptions”

• Readded time-to-live based expiration to ExpiringLruCache

• Closed #87 (wrap non-200 responses in special exception)

• Closed #88 (added PathElement PathMatcher)

6.5.19 Version 0.9.0-RC4 (2012-02-27)

• Fixed spray-client retries not always honoring Pipelined dispatch strategy

• Added missing location pointer to entity of generated redirection responses

• Added directives: reject, cookie, optionalCookie, setCookie, deleteCookie, headerValue, headerValuePF, clien-
tIP, provide and transformRejections

• Made FilterResult and SprayRoute1 monadic

• Added another overload to the ‘authenticate’ directive

• Added ‘toOption’ pimp to Strings (in utils)

6.5.20 Version 0.9.0-RC3 (2012-02-22)

• Fixed #78 (spray-client: unexpected closing of connection not properly handled)

6.5.21 Version 0.9.0-RC2 (2012-02-17)

• Upgrade to Akka 1.3.1

• Fixed getFromResource directive to not serve “content” of resources ending with slash

• Made cacheResults directive honor ‘Cache-Control: max-age’ header

• Added default Marshaller for Option[T] (#81)

• Added TwirlSupport trait

• Improved DebuggingDirectives trait, added logRequestResponse directive

• Improved relaxed header parsing to also accept custom HttpCharsets

6.5.22 Version 0.9.0-RC1 (2012-02-03)

• Upgrades:

– Scala 2.9.1

– Akka 1.3

– spray-json 1.1.0

– spray-can 0.9.2

6.5. Changelog 191



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– SBT 0.11.2

• Changed dependency on akka-actor from scope ‘compile’ to scope ‘provided’

• Added support for chunked responses, including chunk compression and automatic file chunking

• Added new directives: completeWith, redirect, autoChunk, dynamic, transformUnchunkedResponse, transform-
ChunkedResponse

• Added default Marshallers for Eithers, HttpResults, HttpExceptions, Streams, Futures and Array[Byte]

• Added support for JSON (de)serialization via lift-json

• Added support for template rendering via Scalate

• Added support for LDAP authentication

• Added support for asynchronous and cached authentication

• Added option for relaxed header parsing (issue #68)

• Added DebuggingDirectives trait

• Simplified custom rendering of Rejections to HttpResponses

• Improved LruCache implementation to use com.googlecode.concurrentlinkedhashmap

• Fixed #72 (Different HttpConduits sometimes and erroneously share connections)

• Fixed #59 (Factor out Rejection Conversion)

• Fixed #67 (‘cacheResults’ directive should honor ‘Cache-Control: no-cache’ request header)

• Fixed most occurrences of implicit ambiguities with SprayJsonSupport

• Fixed several bugs in header parsing and rendering

• Extended spray-example-spray-can to show off new streaming features

• Lots of other fixes, additions and improvements

6.5.23 Version 0.8.0 (2011-11-16)

• Upgrades:

– Scala 2.9.1

– Akka 1.2

– spray-json 1.0.1

– SBT 0.11.1 (many thx to Steffen for contributing the original buildfile)

• Support for ‘application/x-www-form-urlencoded’ as well as ‘multipart/form-data’ form content (many thx to
Julien for contributing a lot of the implementation)

• Support for ‘multipart/mixed’ content (un)marshalling

• Support for spray-can as the first non-servlet-container web server

• Completely rewritten spray-client, now based on the new spray-can HttpClient

• Completely rewritten servlet connector layer for improved performance and stability

• Three new example projects:

– spray-client-example

– spray-example-simple

192 Chapter 6. Project Info



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

– spray-example-spray-can

• Unified SimpleParsers and Unmarshallers into a joint ‘Deserializer’ hierarchy

• Removed ‘optionalContent’ directive (use ‘content(as[Option[T]])’ instead)

• Renamed ‘spray-http’ module to ‘spray-base’

• Renamed cc.spray.marshalling to cc.spray.typeconversion

• Renamed SprayJsonMarshalling to SprayJsonSupport

• Moved encoding/decoding to for cc.spray.encoding

• Simplified case class extraction, now ‘as(T)’ rather than ‘as(instanceOf(T))’

• Simplified SprayTest infrastructure making the ‘DontDetach’ trait obsolete

• Lots of other fixes, additions and improvements

6.5.24 Version 0.7.0 (2011-07-27)

A great number of changes and improvements, most importantly:

• removed dependency on Akka Mist

• upgraded to Scala 2.9.0-1 and Akka 1.1.3

• split into spray-server, spray-client and spray-http

• added support for

– gzip/deflate encodings

– authentication/authorization (incl. HTTP Basic Auth)

– proper server-side caching

– even better path and parameter matching

– case class extractions

– spray-json (un)marshalling

– Tomcat 6

• closed 27 tickets

6.5.25 Version 0.5.0 (2011-03-31)

first public release

6.6 Credits

spray was influenced by many projects, but the following ones especially stand out:

BlueEyes Another functional web service building toolkit for Scala. sprays HTTP model was originally based on the
one from BlueEyes and the core ideas of the routing DSL are also heavily inspired by what the BlueEyes team
made available.

Netty Netty is an excellent choice if you need to build asynchronous event-driven network applications with Java.
spray adopted Nettys upstream/downstream pipelining approach for its spray-io module.

6.6. Credits 193

https://github.com/jdegoes/blueeyes
https://www.jboss.org/netty/


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

6.7 References

Since its inception in early 2011 organisations around the globe have been running applications using spray success-
fully in production.

For the ones who’d like to make their using spray public we have created this page. If you’d like your organisation to
be listed here (along with a backlink) please provide us with the following details:

• Name of your organisation

• Homepage URL

• Short statement about how spray is used and/or your experiences (so far) with it.

• Logo (optional)

VMware Thanks again for all your hard work on spray. The vCloud Integration Manager wouldn’t have shipped (at
least on time) without it, and we look forward to continuing to use it in our current project as well. :-)

Ebay We are using spray for an internal project here at ebay. It is quite small, and it was mostly as an excuse to learn
about actor-based programming, but so far we have been very impressed by spray’s performance and simplicity
and the fantastic support on the user group.

Movio Movio is a big data analytics platform for the cinema industry. We receive all our data through our Restful API,
powered by spray. We have some complex requirements with routing and spray’s routing module provides the
flexibility to dynamically manipulate routes. We also use spray as the REST backend to our application console
which is a single page web app. spray is an awesome platform = akka + http + performance + simplicity.

Pongr At Pongr, spray powers the restful API used by our iPhone & Android apps and has been in production for a
few months now. We use spray-routing on top of spray-can, wrapped into one fat jar. We are very happy with
spray.

yardi.com We’re using spray for a sizeable set of REST web services for our real-estate platform. Some of the
services are a REST-based event bus, a notification/email system, a rights-management system (kind of like an
authority/security system), and many others. We’re getting excellent use out of spray, and want to pass on our
thanks again for all the work!

Metafor Software We just went live with spray in production for the REST backend of our “single-page” web app
a couple weeks ago. Very low volume, since we’re still in semi-private beta, but I’m very happy with it so far.
The immutable request/response model is a huge win for clarity and composability.

TimeTrade TimeTrade has used spray to build a number of core services within our online appointment scheduling
system, and we plan to use it for even more. It also forms the basis of our stress testing framework. We’ve found
it to be of excellent quality, and it represents the immutable model of HTTP in a very elegant way. The team
behind it is very responsive and helpful.

nokta We are running spray in front of our ad-server at nokta.com, hosting ads for several high-volume websites
(millions of visitors everyday). 3 servers are deployed with custom tarball with dependencies copied in it,
and are running with custom init-scripts. We’ve started with play2 but switched to spray in the first week of
production and never looked back. Besides technical merits the active community is what makes this project
awesome.

Tinga We decided to use spray + Akka instead of using Play + Akka, as we’d like to have a clear separation between
the API- and presentation layers. We are still in the earlier stage of building our infrastructure but are impressed
by the community and the spray team’s responsiveness.

telfish.com We are using spray-can, spray-server and spray-json for our customer-facing query API for more than 2
years now and are very happy with it. Our API code is robust, fast and easy to maintain.

194 Chapter 6. Project Info

http://www.vmware.com
http://www.ebay.com
http://movio.co
http://pongr.com
http://www.yardi.com
http://metaforsoftware.com/
http://www.timetrade.com
http://nokta.com
http://www.tingatech.com
http://www.telfish.com


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Animatron LLC spray powers our internal REST services used to communicate components of our rendering en-
gines and back-end servers. We faced some challenges but got excellent support from the development team.
Keep the good work!

Zuberance We developed a new product completely on top of Scala/Akka/spray and are just finishing up beta.

system insights We converted from Jersey, which took about 2 weeks. The testability of spray is great – and runs
fast.

Postarte.com Our web application is running on spray-can. We have a couple of static HTML web pages, images
etc. served by simple spray routing Directive, but the most of the content is loaded via AJAX/REST/JSON. We
use a Postgresql database with Prequel (enhanced a little bit).

TXOdds We’re using spray.io for a REST interface for our fixtures management toolkit. Our experiences so far have
been very promising and we are considering using it for the development of our new real-time single page web
application. It is very easy to deploy and integrates very well with our existing scala codebase (akka etc.)

6.8 Sponsors

The following companies and organisations have kindly agreed to supply the spray development team with free open-
source licenses of their excellent development tools:

Jetbrains We use IntelliJ IDEA Ultimate as the Scala IDE of our choice.

YourKit YourKit is kindly supporting open source projects with its full-featured Java Profiler. YourKit, LLC is the
creator of innovative and intelligent tools for profiling Java and .NET applications. Take a look at YourKit’s
leading software products: YourKit Java Profiler and YourKit .NET Profiler.

6.9 License

This software is licensed under the Apache 2 license, quoted below.

Copyright © 2011-2015 the spray project <http://spray.io>

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

[http://www.apache.org/licenses/LICENSE-2.0]

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.

6.10 Community Projects

Over the course of the last years the active and vibrant spray community has created numerous additions and extensions
to spray as well as examples and tutorials that, for various reasons, haven’t always found their way into the main
codebase.

As spray is now transitioning into Akka (see also this post on the typesafe blog) we have moved the list of community
projects that formerly resided here into a dedicated section of the Akka “Community Projects” page at this address:

6.8. Sponsors 195

http://www.animatron.com
http://www.zuberance.com
http://systeminsights.com
http://www.postarte.com
http://txodds.com
http://www.jetbrains.com/
http://www.jetbrains.com/idea/
http://www.yourkit.com
http://www.yourkit.com/java/profiler/index.jsp
http://www.yourkit.com/.net/profiler/index.jsp
http://www.akka.io/
http://www.typesafe.com/blog/typesafe-gets-sprayed


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

If you would like to add or update a project entry there please do so by clicking the “Edit” button on this page:
https://github.com/akka/akka.github.com/blob/master/community/index.md

196 Chapter 6. Project Info

https://github.com/akka/akka.github.com/blob/master/community/index.md


CHAPTER 7

Blog

7.1 spray on the Raspberry Pi

7.1.1 Introduction

As a spray newbie and general computer enthusiast I thought of playing around with spray.io and my Raspberry Pi
(RPI) at home. In this blog post I want to show a small example of how to get started with spray.io on the RPI.

The Raspberry Pi is a credit-card sized computer with a huge number of use cases. It can be connected to a TV
and equipped with Raspbmc (a special XBMC-Distribution for the RPI) and then be used as a Home Cinema PC
(HTPC). A photo-enthusiast enhanced his camera and built a RPI-based mini-computer into a battery grip and called
this Camera Pi. Just recently I discovered that it is also possible to build a custom GoogleTV with the RPI. A very
common use case is as a server in your network e.g. file server or web server.

So, as you can see, there are tons of things you can do with this little computer. However, due to its limited system re-
sources (memory, CPU) it is sometimes considered too heavy-weight for JVM-based applications. A perfect challenge
for me to see how well Scala, Akka and spray can scale down rather than up.

7.1.2 JVMs on the Raspberry Pi

Because of the ARM-based architecture of the RPI and the recently added support for the ARM architecture in popular
JDKs, there are some things to consider in choosing the JDK. This sections gives an overview about the possible
options.

The easiest way is to use the JDK bundled with your distribution. You can install it via the known package manager
(e.g. apt). If you choose this way you end up with the default OpendJDK. This gives you a working JVM, which is a
little bit slower because it doesn’t have support for the specific instruction set of the ARM-architecture. The OpenJDK
will fall back to a VM called ZeroVM. This is an interpreter-only VM which is very portable but runs a little bit slower.

Additionally, there is the official version of the JDK 8 from Oracle, which is currently in early-access status. This
version has dedicated support for the instruction set of the ARM and therefore is faster than the OpenJDK. A require-
ment for this JDK is the support of the hardfp-api in your OS, because Oracle’s JDK depends on this. Raspbian, a
Debian-based distribution is an operating system with support for hardfp-api and therefore Oracle’s JDK.

Furthermore, if you want to experiment, you can choose a completely different JDK. A candidate would be e.g. Avian.

For this demo I will use Raspbian and the Oracle JDK. I explain the steps in the next paragraphs.

First, you need a working Linux-Distribution on your RPI. You can find the Raspian-images on the RPI downloads-
page. I’ll use the Raspbian “wheezy” image with support for hardfp-api.

197

http://www.raspberrypi.org
http://www.raspbmc.com
http://xbmc.org
http://www.davidhunt.ie/?p=2641
http://blog.donaldderek.com/2013/06/build-your-own-google-tv-using-raspberrypi-nodejs-and-socket-io/
https://en.wikipedia.org/wiki/ARM_architecture
http://openjdk.java.net/projects/zero/
http://www.raspbian.org/RaspbianFAQ#What_do_you_mean_by_.22soft_float_ABI.22_and_.22hard_float_ABI.22.3F
http://www.raspbian.org
https://github.com/ReadyTalk/avian
http://www.raspberrypi.org/downloads


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

If your Raspbian installation is in place we can move on further to install the JDK. You can download the JDK from
here. There is an installguide which describes how to install the JDK on the RPI. This is basically a tar-file which you
can then simply un-tar to a folder of your choice. For this demo it will be ok to just un-tar it in the home-folder of the
user pi:

tar -xf jdk-8-ea-b36e-linux-arm-hflt-29_nov_2012.tar

This will create the folder jdk1.8.0 in the current dir. Now, you can type ./jdk1.8.0/bin/java -version
to check that Java will run correctly and to see some version information.

7.1.3 spray-can on the Raspberry Pi

So, after our RPI runs a Linux and a JVM, I want to show you how to get started with spray.io on your RPI.

For this I created a customized version of the spray-template project from Github. You can clone this customized
version with the command:

git clone https://github.com/matsluni/spray-template.git

Modifications on the spray-template-project

This customized version is based on the spray-template-project (1.2-M8). This version already uses Akka 2.2 including
the new IO-module developed together with the spray.io team and is completely actor-based. At first I give it a telling
name: spray-can-rpi (see build.sbt). Furthermore, the customized version includes the assembly plugin for sbt
(see build.sbt). This is necessary because it is not possible to build the project on the RPI itself. Therefore we build it
on our local system and transfer the complete JAR over to our RPI. This packaging is done by the assembly plugin.

There are further changes, which include a slightly modified Akka dispatcher config (see application.conf) to reduce
the amount of threads to start by the akka-runtime. Otherwise Akka would start up to 64 threads which would kill
the JVM of the RPI. Another minor change is to let spray-can listen to all interfaces of the RPI (see Boot.scala). This
makes it possible to reach the demo-application from other hosts in the network including our local system.

Running the modified project on the RPI

After you cloned the git repository you can start sbt in this scala project. With the assembly-plugin it is very
easy to package the JAR which contains all the dependencies we need for spray.io. From within sbt you can
just type assembly to start the packaging process. If everything worked out you should have a JAR file in
./target/scala-2.10/ called spray-can-rpi-assembly-0.1.jar. This is the JAR file containing
spray.io and everything it needs to run. This JAR can now transferred to the RPI. If you are on a Unix-like system you
can copy it with scp or if you are on Windows you can use WinSCP.

Now the time has come to start the spray app on the RPI. This is easy. If you transferred the JAR from your system to
the home folder of the user pi where you also downloaded the JDK you can just enter:

~/jdk1.8.0/bin/java -Xss1M -Xms64M -jar spray-can-rpi-assembly-0.1.jar

This is a standard Java JAR start with modifications for the stacksize of 1 MB (-Xss1M) and the start heap size of 64
MB (-Xms64M).

If everything worked fine you should see something like:

[INFO] [05/18/2013 08:28:09.287] [on-spray-can-akka.actor.default-dispatcher-3] [akka://on-spray-can/user/IO-HTTP/listener-0] Bound to /0.0.0.0:8080

Now you can open your browser and direct it to the ip-address of your RPI and the correct port (the port is shown in
the log output of spray-can) and you should see the welcome message of spray-routing and spray-can. This shows that
spray-can now runs on the RPI and is happily answering your requests.

198 Chapter 7. Blog

https://jdk8.java.net/fxarmpreview/index.html
https://blogs.oracle.com/hinkmond/entry/quickie_guide_getting_hard_float
https://github.com/matsluni/spray-template
https://github.com/spray/spray-template
https://github.com/sbt/sbt-assembly
https://github.com/sbt/sbt
http://winscp.net/eng/docs/lang:de


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

7.1.4 A little benchmark

After getting spray-can to work on the RPI I did some benchmarking to get an understanding of how much is possible
with this setup. I ran my tests on a Model B with 256mb ram over LAN on a plain Raspbian installation. The full
hardware-spec of the RPI can be inspected here. For the actual benchmark I used a tool called wrk to run some requests
against the RPI. I used it in the following way and with this parameters:

./wrk -c 30 -t 20 -d20s http://raspberrypi:8080/

This command will use 30 open connections with 20 threads and runs a 20 second test against the RPI. In this test I
got around 400 requests/sec which is quite nice and shows that spray.io on the RPI is a really useful setup upon which
one can implement real applications.

7.1.5 Conclusion

The goal of this blog post was to have a JDK-based HTTP-Server running on the RPI. I can say with spray.io this is
possible. The customized version can be seen as a first step to build your own applications running on the RPI.

Furthermore, with this post I wanted to show some more things:

1. How easy it is to deploy spray.io on an embedded-like system like the RPI.

2. Scala can keep the promise to be a scalable language and platform, especially with the results from the little
benchmark shown before.

3. Make myself more familiar with spray.io, Scala and the whole ecosystem to be able to build larger applications
in the future.

For some feedback or other questions you can reach me via my twitter account @matsluni.

Finally, I want to thank Mathias and Johannes from the spray.io team for this great piece of software, to make the guest
post happen and also the support they gave me during the creation of this post.

7.2 spray 1.0-M8 / 1.1-M8 / 1.2-M8 released

Dear sprayers,

we – the spray team – are happy and proud to finally be able to announce the release of the much too long awaited M8
milestone of spray 1.0 / 1.1 / 1.2.

A lot has happened in and around the spray codebase since we released M7 in December, with the most notable change
probably being the move onto the new Akka I/O layer that was jointly developed with the Akka team in the last months
in order to provide an even better “Scala-all-the-way-through” actor-based I/O foundation, not just for HTTP. This new
I/O layer will be officially released with Akka 2.2 (the first RC of which is already at this time), but for everyone who
is not yet willing or able to upgrade from Akka 2.0 or 2.1 we provide a one-to-one backport of the new I/O abstraction
with spray-io 1.0/1.1-M8.

But also on top of the raw I/O layer this milestone brings a lot of good stuff for your spray applications, for example:

• A completely new and even faster implementation of our spray-can HTTP parser. The work in this area was the
basis for spray’s success in the latest round of the techempower benchmark, so upgrading to M8 should give
your HTTP stack a nice performance boost.

• Fully rewritten HTTP Client APIs, which improve upon the experiences from earlier releases and give you the
most powerful and flexible client-side HTTP abstractions available with spray to date.

• Much improved HTTP model in spray-http, with things like complete serializability, a very fast and fully RFC
3986-compliant URI parser as well as better and more efficient rendering abstractions.

7.2. spray 1.0-M8 / 1.1-M8 / 1.2-M8 released 199

http://en.wikipedia.org/wiki/Raspberry_Pi#Specifications
https://github.com/wg/wrk
https://twitter.com/Matsluni
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The full list of changes, fixes and additions is too long for us to properly compile it, please check out the Changelog
for more details.

Since this milestone is a triple release, here are the Scala and Akka versions that are targeted by the different artifacts
(see also the Current Versions chapter):

spray version Scala version Akka version
1.0-M8.1 Scala 2.9.x Akka 2.0.x
1.1-M8 Scala 2.10.x Akka 2.1.x
1.2-M8 Scala 2.10.x Akka 2.2.x

The development statistics for 1.1-M8 (since 1.1-M7):

• 334 commits

• 1.081 files changed

• 21.628 insertions

• 15.363 deletions

• 18 committers

As the name implies this release is still only a milestone until the 1.0/1.1/1.2 finals, but it will be the last one. In the
coming weeks we a planning on burning through the open tickets and provide you with the first release candidate as
soon as we can.

Until then we are, as always, very much looking forward to your feedback!

Happy spraying!

Cheers,
Mathias

7.2.1 Update 2013-06-11

We discovered a regression in spray-routing 1.0-M8 causing an NPE on first access. This has been fixed with the
superseding release of 1.0-M8.1.

7.3 Benchmarking spray

A few days ago the folks at techempower published round 5 of their well-received current series of web framework
benchmarks, the first one in which spray participates. The techempower benchmark consist of a number of different
test scenarios exercising various parts of a web framework/stack, only one of which we have supplied a spray-based
implementation for: the “JSON serialization” test. The other parts of this benchmark target framework layers (like
database access), which spray intentionally doesn’t provide.

Here are the published results of the JSON test of round 5 presented in an alternative visualization (but showing the
exact same data):

The test was run between two identical machines connected via a GB-Ethernet link, a client machine generating
HTTP requests with wrk as the load generator, and a server machine running the respective “benchmarkee”. In order
to provide an indication of how performance varies with the underlying hardware platform all tests are run twice, once
between two EC2 “m1.large” instances and once between two dedicated i7-2600K workstations.

200 Chapter 7. Blog

https://github.com/spray/spray/issues?state=open
http://www.techempower.com/
http://www.techempower.com/blog/2013/05/17/frameworks-round-5/
http://www.techempower.com/blog/2013/05/17/frameworks-round-5/
https://github.com/wg/wrk


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

7.3.1 Analysis

In the graph above we compare the performance results on dedicated hardware with the ones on the EC2 machines.
We would expect a strong correlation between the two, with most data points assembled around the trendline. The
“bechmarkees” that are far off the trendline either don’t scale up or down as well as the “pack” or suffer from some
configuration issue on their “weak” side (e.g. cpoll_cppsp and onion on i7 or gemini/servlet and spark
on the EC2). Either way, some investigation as to the cause of the problem might be advised.

In addition to plotting the average requests/sec numbers reported by wrk at the end of a 30 second run we have included
an alternative projection of the request count, based on the average request latencies reported by wrk (e.g. 1 ms avg.
latency across 64 connections should result in about 64K avg. req/s). Ideally these projected results should roughly
match the actually reported ones (bar any rounding issues).

However, as you can see in the chart the two results differ substantially for some benchmarkees. To us this is an
indication that something was not quite right during the respective test run. Maybe the client running wrk experienced
some other load which affected its ability to either generate requests or measure latency properly. Or we are seeing
the results of wrk’s somewhat “unorthodox” request latency sampling implementation. Either way, our confidence
regarding the validity of the avg. request counts and the latency data would be higher if the two results were more
closely aligned.

7.3.2 Take-Aways

The special value of this benchmark stems from the sheer number of different frameworks/libraries/toolsets that the
techempower team has managed to include. Round 5 provides results for a very heterogeneous group of close to 70
(!) benchmarkees written in 17 different languages. As such it gives a good indication of the rough performance char-
acteristics that can be expected from the different solutions. For example, would you have expected a Ruby on Rails
application to run about 10-20 times slower than a good JVM-based alternative? Most people would have assumed a
performance difference but the actual magnitude thereof might come as a surprise and is certainly interesting, not only
for someone currently facing a technology decision.

For us as authors of an HTTP stack we look to such benchmarks from a slightly different angle. The main question for
us is: How does our solution perform compared to alternatives on the same platform? What can we learn from them?
Where do we still have potential for optimization that we appear to have left on the table? What effect on performance
do the various architecture decisions have that one has to make when writing a library like spray?

As you can see from the graph above we can be quite satisfied with spray’s performance in this particular benchmark.
It outperforms all other JVM-based HTTP stacks on the EC2 and, when looking at throughput projected from the
latency data, even on dedicated hardware.

This shows us that our work on optimizing spray’s HTTP implementation is paying off. The version used in this
benchmark is a recent spray 1.1 nightly build, which includes most (but not all) performance optimizations planned
for the coming 1.0/1.1/1.2 triple release (1.0 for Akka 2.0, 1.1 for Akka 2.1 and 1.2 for Akka 2.2).

But, does this benchmark prove that spray is the fastest HTTP stack on the JVM?

Unfortunately it doesn’t. This one test exercises way to small a percentage of all the logic of the various HTTP
implementations in order to be able to properly rank them. It gives an indication, but hardly more.

What’s missing?

7.3.3 Benchmarking Wish-List

Let’s look more closely at what the “JSON serialization test” of the techempower benchmark actually exercises. The
client creates between 8 and 256 long-lived concurrent TCP connections to the server and fires as many test requests as
possible across these connections. Each request hits the server’s NIC, bubbles up through the Linux kernel’s network
stack, gets picked up by the benchmarkees IO abstraction and is passed on to the HTTP layer (where it is parsed and

7.3. Benchmarking spray 201

https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/wg/wrk


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

maybe routed) before actually being handled by the “application logic”. In the case of this benchmark the application
merely creates a small JSON object, puts it into an HTTP response and sends it back down the stack, where it passes
all layers again in the opposite direction.

As such this benchmark tests how well the benchmarkee:

• interacts with the kernel with regard to “pulling out” the raw data arriving at a socket

• manages internal communication between its inner layers (e.g. IO <-> HTTP <-> Application)

• parses HTTP requests and renders HTTP responses

• serializes small JSON objects

It does all this using small requests with a fixed set of HTTP headers over a rather small number of long-lived connec-
tions. Also, it does it all at once without giving us a clue as to the potential strengths and weaknesses of the individual
parts of the stack.

If we wanted to learn something deeper about how spray performs compared to its JVM-based competitors and where
its strengths and weaknesses lie we’d have to setup a whole range of benchmarks that measure:

• raw IO performance:
1 to say 50K long-lived concurrent connections, minimal request and response sizes

• connection setup overhead:
varying number of per-request connections, minimal request and response sizes

• HTTP request parser performance:
varying number of request headers and header value sizes, varying entity sizes

• HTTP response renderer performance:
varying number of response headers and header value sizes, varying entity sizes

• HTTP chunking performance:
chunked requests and responses with varying number and size of message chunks

• HTTP pipelining performance:
varying number of request batch sizes

• SSL performance:
1 to say 50K long-lived connections, minimal request and response sizes

• Websocket performance

• System- and JVM-level metrics (CPU utilization, GC-Activity, etc.)

If we had a benchmark suite producing numbers like these we’d feel much more comfortable in establishing a proper
performance-based ranking of spray and its alternatives. And wouldn’t it be great if there was something like a
“continuous benchmarking” infrastructure, that would automatically produce these benchmark results upon a simple
git push into its repository?

Oh well... I guess our ever-growing todo-list just received one more item marked important... :)

Cheers,
Mathias

202 Chapter 7. Blog



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

7.4 The Magnet Pattern

In this post I’d like to shine some light on one particular implementation technique that is used extensively under the
hood of sprays routing DSL and which has turned out as a very valuable tool in our “pattern toolbox”. It solves certain
kinds of problems in Scala API design and DSL development, especially (but not only) with regard to overloaded
methods. We call it the magnet pattern and, hopefully, by the time you’ve finished reading this post this name will
make sense to you.

Before diving into the details I’d like to make clear that we are certainly not the first ones to use this pattern and by no
means claim its original “inventorship”. However, we find it interesting and valuable enough to give it a proper name
and dedicate a somewhat lengthy blog post to its description. (In the process we’ll touch on quite a few interesting edge
cases of the current Scala language implementation, so I hope you’ll learn something even if you consider yourself a
somewhat seasoned Scala developer.)

(Update 2012-12-17: The following two paragraphs were added.)

There have been some questions as to how the technique presented here differs from type classes, which are an
increasingly common and widely used mechanism in Scala (see this paper for some good background material). The
short answer is: There is no real difference. Rather, we see magnets as a specific application of type classes, which are
a broader, more general concept. Among other things type classes can be used for type-level computation or advanced
generic programming as in shapeless. Most people probably first come to know them as a solution for associating
logic with types in a way that allows for very loose coupling and retroactive extension. For example, spray-json uses
type classes to attach JSON (de)serialization logic to types “from the outside”.

As shown in this post type classes can also be used to solve certain issues with regard to method overloading in Scala.
Our intent is not to “rebrand” type classes, but rather to describe a way of using them for a specific purpose. In the
case of method overloading we see value in labelling the combination of purpose and implementation technique with
a dedicated name. With some kind of naming convention it’s easier for someone reading a piece of code to derive
intent and more quickly understand the purpose of a particular construct. This, describing a particular use case for
type classes along with a proposal for naming the things involved, is what this post is all about.

7.4.1 The Problem

There are only two hard things in Computer Science: cache invalidation, naming things and off-by-1
errors.

—Phil Karlton (slightly adapted)

When you design a Scala API, be it in the context of a DSL or not, especially the “naming things” part can be one
of the main challenges. Ideally the names you pick nicely capture the respective concepts of the domain you are
modelling. If there are several ways the same domain concept can be applied, as is often the case, the representations
of these alternatives in your API should also receive the same name. In your code this usually manifests itself as what
is commonly called “method overloading”.

For example, in the domain of HTTP servers there is the concept of “finalizing” the processing of an HTTP request
by sending some kind of response to the client. In sprays routing DSL this concept goes by the name “complete”.
Thereby several ways of request “completion” are supported. Currently you can “complete” a request with either one
of these seven sets of things:

• just a status code

• a custom object (that is to be marshalled as the response entity)

• a status code and a custom object

• a status code, a list of HTTP response headers and a custom object

• an HttpResponse object

7.4. The Magnet Pattern 203

http://ropas.snu.ac.kr/~bruno/papers/TypeClasses.pdf
https://github.com/milessabin/shapeless
https://github.com/spray/spray-json


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

• a Future[HttpResponse]

• a Future[StatusCode]

Since all of these are just different ways of achieving the same thing, namely “completing” the request, they should
all be accessible via the same name in our DSL, namely complete. We do not want to clutter our DSL with
seven different names like completeWithStatus, completeWithStatusAndObject and so on. Luckily,
Scala allows for method overloading, so we could try to model our seven different completion alternatives with these
method overloads:

def complete(status: StatusCode)
def complete[T :Marshaller](obj: T)
def complete[T :Marshaller](status: StatusCode, obj: T)
def complete[T :Marshaller](status: StatusCode, headers: List[HttpHeader], obj: T)
def complete(response: HttpResponse)
def complete(future: Future[HttpResponse])
def complete(future: Future[StatusCode])

Unfortunately though, method overloading in Scala comes with (at least) the following problems and inconveniences:

1. “Collisions” caused by type erasure

2. No lifting into a function (of all overloads at the same time)

3. Unavailability in package objects (before Scala 2.10)

4. Code duplication in case of many similar overloads

5. Limitations with regard to parameter defaults

6. Limitations with regard to type inference on arguments

The magnet pattern can solve all but the last two of these issues and we are going to discuss them in detail in a moment,
but first let’s understand what the magnet pattern actually is.

7.4.2 Method Overloading Reloaded

The magnet pattern is an alternative approach to method overloading. Rather than defining several identically named
methods with different parameter lists you define only one method with only one parameter. This parameter is called
the magnet. Its type is the magnet type, a dedicated type constructed purely as the target of a number of implicit
conversions defined in the magnets companion object, which are called the magnet branches and which model the
various “overloads”.

Show me the Code

Let’s go back to our “complete” example from above to understand what this means. However, in order to focus on
the key elements we are going to look only at the following three slightly adapted overloads:

def complete[T :Marshaller](status: StatusCode, obj: T): Unit
def complete(future: Future[HttpResponse]): Int
def complete(future: Future[StatusCode]): Int

For the sake of the example the return types are different from the actual spray-routing implementation but they serve
well for illustrating the concepts. In order to model these three complete overloads with the magnet pattern we
replace them with this single method definition:

def complete(magnet: CompletionMagnet): magnet.Result = magnet()

The CompletionMagnet is the following simple trait:

204 Chapter 7. Blog



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

sealed trait CompletionMagnet {
type Result
def apply(): Result

}

The magnet branches are where the actual logic lives. They represent the different overload implementations we had
before and are defined as implicit conversions to CompletionMagnet instances in the companion object:

object CompletionMagnet {
implicit def fromStatusObject[T :Marshaller](tuple: (StatusCode, T)) =
new CompletionMagnet {
type Result = Unit
def apply(): Result = ... // implementation using (StatusCode, T) tuple

}
implicit def fromHttpResponseFuture(future: Future[HttpResponse]) =
new CompletionMagnet {
type Result = Int
def apply(): Result = ... // implementation using future

}
implicit def fromStatusCodeFuture(future: Future[StatusCode]) =
new CompletionMagnet {
type Result = Int
def apply(): Result = ... // implementation using future

}
}

That’s all we need in order to model method overloading with a magnet. All of the following calls will execute the
logic in the respective magnet branch, just as if we had defined them with “regular” overloads:

complete(StatusCodes.OK, "All fine") // returns Unit
complete(someHttpResponseFuture) // returns Int
complete(someStatusCodeFuture) // returns Int

How does it work?

The magnet parameter on the single complete method we defined serves only as the “center of gravity” towards
which the different magnet branches define implicit conversions. If you call complete with an argument that is not a
CompletionMagnet instance itself, as is usually the case, the compiler looks for an implicit conversion that it can
use to turn the argument you specified into an CompletionMagnet, so that your call becomes legal. Since implicit
conversions defined in the companion object of any involved type are automatically in scope the compiler can “see”
and select the matching magnet branch (if there is one) and we are set.

What is interesting is that this approach also works for “overloads” with more than one parameter just as well as
different return types. If you call complete with several arguments the compiler looks for an implicit conversion
that can produce a magnet instance from a tuple wrapping all arguments. This way overloads with up to 22 parameters
(the maximum arity of tuples in scala) can be supported.

If the overloads differ in their return types, as in our example above, we can resort to dependent method types to model
them. Dependent method types are available in Scala 2.9 as an experimental feature and thus need to be explicitly
enabled. Even though they can be used for building powerful constructs there is nothing particularly dangerous or
magical about them, so as of Scala 2.10 dependent method types are always enabled and do not even require a SIP-
18-style language import. What they allow you to do is to specify the return type of a method as “a function of” the
method parameters, which is exactly what we are doing in the example above.

7.4. The Magnet Pattern 205

http://docs.scala-lang.org/sips/pending/modularizing-language-features.html
http://docs.scala-lang.org/sips/pending/modularizing-language-features.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Implementation Notes

• If all overloads have the same return type there is no need for a type member on the magnet type. The central
method with the magnet parameter (def complete in the example above) can then simply have the return
type directly in its signature.

• If the magnet branch implementations share common logic you can of course factor it out, e.g. into private
helpers on the magnet companion object. Another option would be to pull it up into the central method itself
(def complete in the example above) and have the magnet only contribute the parts that differ between the
overloads.

• Since it’ll never be called from the outside the name of the abstract method in the magnet trait doesn’t really mat-
ter. You might even want to mark it private[module_name]. Also the names of the implicit conversions
on the magnet companion don’t really matter. As you can see above we call them from<source-type> by
convention.

7.4.3 Benefits

So, what does this alternative approach to method overloading give us? As it turns out it solves most of the problems
with method overloading that we listed before. Of course, it also comes with a couple of drawbacks of its own, but
first let’s look into the advantages a bit deeper.

No Erasure-induced Collisions

Collisions caused by type-erasure probably pose the most severe problem of “traditional” method overloading on the
JVM, since there is no clean work-around. It actually prevents us from implementing our complete overloads in the
usual fashion, as can be seen by the following error the Scala compiler produces when we try to:

[error] ...: double definition:
[error] method complete:(future: scala.concurrent.Future[spray.http.StatusCode])Int and
[error] method complete:(future: scala.concurrent.Future[spray.http.HttpResponse])Int
[error] have same type after erasure: (future: concurrent.Future)Int
[error] def complete(future: Future[StatusCode]) = { ...
[error] ^
[error] one error found

The compiler is telling us that the last two of our overloads are a “double definition” because of type erasure. In order
to understand what’s going on we have to take a quick look at how methods are represented by the JVM. The JVM
supports generics through type erasure (rather than type reification as Microsofts CLR does, check out this article for
more info on the difference). This means that all parameter types on generic types (in Java speak) are erased and
non-existent on the JVM level. To the JVM our two overloads:

def complete(future: Future[HttpResponse]): Unit
def complete(future: Future[StatusCode]): Unit

both look like this:

def complete(future: Future): Unit

Since the compiler cannot produce two different implementation for the same method it has to give up.

This erasure-induced limitation to method overloading is not specific to Scala. Java and other JVM-based languages
suffer from it as well. Theoretically we could hack our way around it by introducing “fake” return types for the
colliding methods (since the return type is part of the method signature and therefore sufficient to discriminate between
overloads), but in Scala we don’t have to. With overloading via magnets we can remove the need to supply two

206 Chapter 7. Blog

http://en.wikipedia.org/wiki/Type_erasure
http://en.wikipedia.org/wiki/Reification_(computer_science)
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://www.jprl.com/Blog/archive/development/2007/Aug-31.html


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

different implementations for the same (as seen by the JVM) method and nicely overcome the “collision problem”
without having to compromise our API on the type level.

Full Function-Lifting

Scala supports a nice and easy notation for lifting a method into a function. Just follow the method name (without
arguments) with a _ as shown in this example:

scala> def twice(i: Int) = (i * 2).toString
twice: (i: Int)java.lang.String

scala> twice _
res0: Int => java.lang.String = <function1>

Now, if we overload the method like this:

def twice(i: Int) = (i * 2).toString
def twice(d: Double) = (d * 2).toString

it’d be nice if we could still simply say twice _ and somehow lift both overloads at once, so that later on we could
call the lifted function with either an Int or a Double. Unfortunately this is not supported, you have to decide at the
“lifting point”, which overload to lift and you can only lift one.

With magnets this lifting of all overloads at once is no problem. In this case the type of twice _ is TwiceMagnet
=> String and the “overloadedness” is retained. Only at the point where the lifted function is actually applied do
you have to decide, which overload to choose. Just as in the unlifted case the compiler will supply the required implicit
conversions at the call site.

Unfortunately this type of lifting only works when all overloads have the same return type and thus no dependent
method types are required. For example, if we try to lift our complete overload from above with complete _ the
compiler will produce the following error:

error: method with dependent type (magnet: CompletionMagnet)magnet.Result
cannot be converted to function value
complete _
^

Package Object Support

Due to a long-standing Scala bug that was just recently fixed method overloading in package objects is not supported
with any Scala version before 2.10. If you are searching for a solution for Scala 2.9 or earlier magnets might present
a nice solution.

DRYness for many similar Overloads

Sometimes DSLs can require the definition of a larger number of very similar method overloads, which reduces
DRYness and generally feels ugly. For example in spray 0.9 the parameters directive, which allows you to define
the extraction of one or more request query parameters, was defined like this:

def parameters[A](a: PM[A]): SprayRoute1[A] =
parameter(a)

def parameters[A, B](a: PM[A], b: PM[B]): SprayRoute2[A, B] =
parameter(a) & parameter(b)

def parameters[A, B, C](a: PM[A], b: PM[B], c: PM[C]): SprayRoute3[A, B, C] =

7.4. The Magnet Pattern 207

https://issues.scala-lang.org/browse/SI-1987
https://github.com/spray/spray/blob/a69a8aefcd2826680b1b302192d6658524fcb4c3/spray-server/src/main/scala/cc/spray/directives/ParameterDirectives.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

parameters(a, b) & parameter(c)

def parameters[A, B, C, D](a: PM[A], b: PM[B], c: PM[C], d: PM[D]): SprayRoute4[A, B, C, D] =
parameters(a, b, c) & parameter(d)

...

Ideally, spray would have supported an arbitrary number of parameters like this but due to the duplication required we
only defined nine. After we switched the implementation of the parameters directive to a combination of magnets
and shapeless’ HLists we can now support up to 22 parameters without any duplication.

The details of how exactly this is implemented in spray-routing are beyond the scope of this article, but in essence the
solution looks like this: We define a single magnet branch for all tuples at once by making use of shapeless’ support
for automatically converting tuples to HLists. Since shapeless allows us to easily fold over HLists we can reduce the
problem to a binary poly-function that specifies how two parameters are to be combined. This is pretty much as DRY
as it gets.

Removal of implicit Parameters

sprays routing DSL tries to provide a way for API definition that is both highly concise and highly readable. As such it
relies heavily on the one method in Scala that beats all others with regard to brevity: apply. If an object has only one
clearly defined behavior or if there is a central one, which clearly outrivals all others in terms of importance, modeling
this behavior as an apply method is the natural choice. Unfortunately, implicit parameter lists and apply occupy
“the same namespace”, which can lead to collisions. Since idiomatic Scala often times relies quite heavily on implicits
(for instance when working with type classes) this can present a problem.

For example, consider this snippet, which loosely resembles what we have in spray:

val post: Route => Route = ...

Here post defines some logic that modifies a Route. For this example it doesn’t matter how Route is actually
defined. All we care about is that we can use post to wrap a Route thereby producing another Route:

val route: Route =
post {
... // some inner route

}

The post modifier is only one of many modifiers that can be freely combined. Some of them are not modelled as
vals but rather as defs, since they take some parameters. For example the hosts modifier filters requests according to
some host name:

def host(hostName: String): Route => Route = ...

You could combine it with post like this:

val route: Route =
host("spray.io") {
post {

... // some inner route
}

}

The problem arises if a modifier method requires an implicit parameter list, for example if we wanted to flexibilize the
host modifier to take any parameter that can be implicitly converted to a String:

def host[T](obj: T)(implicit ev: T => String): Route => Route = ...

208 Chapter 7. Blog

https://github.com/milessabin/shapeless
https://github.com/spray/spray/blob/master/spray-routing/src/main/scala/spray/routing/directives/ParameterDirectives.scala


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

At first glance this change doesn’t look like it would hurt us but in fact it breaks our modifier composition! When we
now write:

host("spray.io") {
... // some Route expression

}

the compiler will interpret our inner route expression not as an argument to the Route => Route function produced
by host, but rather as an explicitly specified value for the implicit parameter. Clearly this is not what we want. We
could fix this with an extra pair of parentheses like this:

(host("spray.io")) {
... // some Route expression

}

but as DSL designers this must leave us unsatisfied.

Luckily, the magnet pattern provides a nice solution. It allows us to push the implicit requirement “one level down”,
so the combinability of our host modifier is fully restored:

def host(magnet: HostMagnet) = magnet()

sealed trait HostMagnet {
def apply(): Route => Route

}

object HostMagnet {
implicit def fromObj[T](obj: T)(implicit ev: T => String) =
new HostMagnet {
def apply() = ...

}
}

Modelled in this way the implicit parameter list on the host method is removed, which prevents it from colliding
with the apply method on the returned object (the Route => Route function in our case).

This example shows that the magnet pattern has certain applications outside of providing a mere alternative to method
overloading. Because sprays routing DSL relies so heavily on functions and thereby apply calls, “removing” implicit
parameter lists on DSL elements is crucial and the magnet pattern turns out to be a great asset in this regard.

7.4.4 Drawbacks

Of course, where there is light there must also be some darkness. The magnet pattern certainly isn’t an exception in
that regard. So let’s look at what we have to pay in order to reap the benefits discussed above.

Verbosity

You probably already noticed that magnets come with a certain amount of extra verbosity. Having to introduce a
dedicated type with companion object and anonymous classes for every magnet branch is no doubt a disadvantage.
Apart from the additional lines this overhead increases code complexity, especially for other people reading your code.
Someone not familiar with the pattern might scratch his head about why you chose to jump through all these extra
hoops instead of simply resorting to “traditional” method overloading.

7.4. The Magnet Pattern 209



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

API “Obfuscation”

Somewhat related to the previous point, the magnet pattern might be perceived as actually “obfuscating” your APIs.
While with “traditional” method overloading the API of a class or trait can be easily grasped from the method signa-
tures the introduction of magnets pushes important parts of the API down into the “branches” on the magnet compan-
ion, where they are scattered across several implicit conversions. Also, since parameter lists with several elements are
grouped together as tuples, where the individual members have no explicit name, important information with regard
to the semantics of the individual parameters might be lost.

Another aspect of this is that the tools you might be relying on for inspecting a method signature at the call-site (like
the “Parameter Info” view of your IDE) will not work anymore once you “magnetized” the method.

No named Parameters

Since parameters are not actually defined on the method itself you cannot address them by name, i.e. this doesn’t work
(coming back to our example from the beginning):

complete(status = 200, obj = "All good")

Limited by-name Parameters

If you have several parameters on an overload and some of them are call-by-name you cannot transform that overload
into a magnet branch and uphold the by-name property. E.g. this method cannot be directly “magnetized”:

def bar(a: Int, b: => String)

If you have only one single call-by-name parameter things might work as expected, depending on how exactly you’d
like the parameter to be used, but there is a catch to watch out for!

Suppose we have this “traditional” definition:

def foo(s: => String): Unit = {
println(s)
println(s)

}

We can “magnetize” it like this:

def foo(magnet: FooMagnet): Unit = magnet()

sealed trait FooMagnet {
def apply()

}
object FooMagnet {

implicit def fromString(s: => String) =
new FooMagnet {

def apply(): Unit = {
println(s)
println(s)

}
}

}

This compiles and, when we look at the following example, appears to be doing the same thing as its “unmagnetized”
counterpart:

210 Chapter 7. Blog



spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

def string() = {
print("NOT-")
"BAD"

}

foo(string())

This ends up printing “NOT-BAD” twice, as expected. Now if we move the body of the string() method directly
into the argument expression of foo like this:

foo {
print("NOT-")
"BAD"

}

you might be surprised to see the output being “NOT-BAD” and “BAD” instead. The print("NOT-") line is not
actually executed during the second evaluation of the by-name parameter of the implicit fromString. How come?

The reason is discussed in Scala issue SI-3237. In essence: The compiler has several options of how exactly to insert
the implicit conversion and chooses the “wrong” one. Instead of generating this:

foo {
FooMagnet.fromString {
print("NOT-")
"BAD"

}
}

it generates this:

foo {
print("NOT-")
FooMagnet.fromString {
"BAD"

}
}

which is enough to make the types line up, but isn’t quite what we want. So, while “magnetizing” single by-name
parameters works as expected if the argument is a single expression, the behavior of the magnetized version differs
from the unmagnetized one if the argument consists of a block with several statements. Definitely something to be
aware of!

Param List required

(2012-12-17: Updated after feedback with corrections, see post comments below)

The magnet pattern relies on the ability of the compiler to select one of potentially several magnet branches in order
to make an otherwise illegal call work (type-wise). In order for this logic to actually kick in we need to “provoke” an
initial type-mismatch that the compiler can overcome with an implicit conversion. This requires that we actually have
a parameter list to work with. Overloads without a parameter list, like:

def foo: String

cannot be “magnetized”. Unfortunately this also renders the magnet pattern ineffective for removing implicit parameter
lists that are not preceded by a non-implicit parameter list, something that we have to work around in several places in
spray-routing.

Note that this does not mean that the parameter list cannot be empty. An overload like:

7.4. The Magnet Pattern 211

https://issues.scala-lang.org/browse/SI-3237


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

def foo(): String

can be turned into the following magnet branch without any problem:

implicit def fromUnit(u: Unit): FooMagnet = ...

No default Parameters

It’s not hard to picture situations where combining method overloading with default parameters leads to apparent
ambiguities that can quite significantly reduce the readability of your code. This for example:

def foo(a: Int, b: String = "") = ...
def foo(b: Int) = ...

is perfectly legal and compiles fine. However, the default parameter on the first overload will never actually kick in.
Moreover, someone reading your code (like yourself 6 months down the road) might easily trip over which overload
is actually being called by something like foo(42).

Additionally, even in cases without risk of ambiguities, the Scala compiler currently only allows one of all overloads
to define default parameters, otherwise you’ll see a multiple overloaded alternatives of method
foo define default arguments compiler error. As explained by this answer by Lukas Rytz on the scala-
user mailing list the reason for this is a technical detail of how default parameters are currently implemented. So,
potentially, this behavior could be changed in a future Scala version. (However, I certainly wouldn’t count on it.)

Unfortunately, when implementing overloading with magnets, default parameters are not available at all. Instead
you’ll have to fall back to the old Java way of “unrolling” all defaults into their own overloads (i.e. magnet branches).

No Type Inference on Arguments

There are situations where method overloading prevents the compiler from infering types in the way it otherwise
would. Consider this example:

object Test {
def foo(i: Int, f: String => String) = f(i.toString)
def foo(d: Double, f: String => String) = f(d.toString)

}

Test.foo(42.0, _.trim)

This looks like a perfectly valid piece of code that the compiler should have no problem interpreting. Let’s see what
happens when we paste it into the REPL:

scala> :paste
// Entering paste mode (ctrl-D to finish)

object Test {
def foo(i: Int, f: String => String) = f(i.toString)
def foo(d: Double, f: String => String) = f(d.toString)

}

Test.foo(42.0, _.trim)

// Exiting paste mode, now interpreting.

error: missing parameter type for expanded function ((x$1) => x$1.trim)
Test.foo(42.0, _.trim)

^

212 Chapter 7. Blog

https://groups.google.com/forum/#!msg/scala-user/FyQK3-cqfaY/fXLHr8QsW_0J


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

The compiler cannot infer that the parameter of our anonymous function literal is a String even though there is obvi-
ously no other option. When we remove the first overload all is well and the snippet happily compiles. The reason
for this phenomenon is buried in section “6.26.3 Overloading Resolution” of the Scala Language Specification. You
might want to check out Jasons answer to this Stackoverflow question for some easier-to-understand explanation.

What we can see from this example is that method overloading can blind the compiler from “seeing” the argument
type when several overloads define parameters with the same “shape” at the respective position. Unfortunately this is
not only not improved by using magnets, it is even worsened.

Let’s look at an example (Scala 2.10 this time):

def foo(s: String): Unit = ???
def foo(f: String => String) = println(f(" Yay!"))

foo(_.trim)

Because the two overloads do not have the same “shape” this compiles and works as expected. Now the same thing
magnetized:

def foo(magnet: FooMagnet) = magnet()

sealed trait FooMagnet {
def apply()

}
object FooMagnet {

implicit def fromString(s: => String) = new FooMagnet { def apply() = ??? }
implicit def fromFunc(f: String => String) =
new FooMagnet {
def apply() = println(f(" Yay!"))

}
}

foo(_.trim)

This doesn’t compile. We get the same missing parameter type for expanded function error as
above, which shows us that the compiler is unable to infer that our function literal is to have the type String =>
String. When we think again about how the magnet pattern actually works this becomes clear. The compiler is
looking for an implicit conversion from the type we specify to the magnet type. Since our _.trim argument does not
have the type String => String (but rather some unqualified Function1 type) the compiler cannot relate it to
the respective magnet branch. Therefore it has no way of fully establishing the type of our function literal and gives
up.

What this shows us is that the magnet pattern only works if the type of all arguments is fully known at the call site.
Sometimes this can be inconvenient.

7.4.5 Conclusion

Stepping back, we can conclude that the magnet pattern offers a real alternative to “traditional” method overloading.
It’s an alternative that is not per se better or worse. Rather, it’s simply different, with its own advantages and dis-
advantages. What is nice is that most of its properties are somewhat orthogonal to traditional overloading, the two
solutions only share drawbacks in two areas (default parameters and type inference). For all other aspects one solution
can overcome the issues of the other in that area, which gives us the choice to pick whatever technique best fits the
requirements at hand. If you want you can even mix the two in one particular set of overloads. For example, you might
choose to only use magnets for overcoming an erasure-induced collision on two overloads, and leave all others as is.

So, no matter whether you see immediate application opportunities for magnets in your own code or not, we think that
the magnet pattern is a valuable technique to understand and master. If nothing else, having read about it will help you
better comprehend what’s going on under the hood of sprays routing DSL...

7.4. The Magnet Pattern 213

http://stackoverflow.com/questions/3315752/why-does-scala-type-inference-fail-here/3316091#3316091


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

Cheers,
Mathias

7.5 Welcome to the spray Blog

During the writing and continuous improvement of the spray documentation we’ve come across multiple things that
don’t quite fit the reference-type nature of the rest of this site. Sometimes this is because the material is kind of
cross-cutting, like the description of a general technique used in several places of the spray implementation, and
sometimes because it’s more of a one-off highlighting of a specific feature or behavior. For this type of content a
blog-style channel appears to be the better format, which is why we hereby solemnly unveil the official “spray blog”.
***tadaa***

In addition to presenting our own posts we’d like to use this blog as an open platform for content from the community.
Any kind of interesting material that’s somehow, whether directly or more remotely, related to spray is very much
welcome. It could be a small tidbit about a certain pattern you’ve discovered, an architecture-level description of a
real-world API you’ve build or a maybe the results of a benchmark you’ve run. We’ll happily serve up your article
even if spray somehow did not make it to the top of your performance or overall satisfaction ranking... (well.... we’ll
see about that... ;^).

In any case, we are happy to hear from you, just pick any channel from the Contact page or type away in the posts
comments section below. And if you really want to go for it fork the spray codebase on github, add a post to the
/docs/blog/ folder and send us a pull request!

Cheers,
Mathias

214 Chapter 7. Blog

https://github.com/spray/spray
https://github.com/spray/spray/tree/master/docs/blog


CHAPTER 8

Contact

8.1 Mailing List

In most cases the active and friendly spray mailing list is probably the best place for your needs with regard to support,
feedback and general discussion.

Note: Your first post after signup is going to be moderated (for spam protection), but we’ll immediately give you full
posting privileges if your message doesn’t unmask you as a spammer.

8.2 Twitter

If you follow us on twitter we’ll keep you informed about new developments as well as general news around spray.

8.3 Email

If you feel that the mailing list is not appropriate for your request, you can also mail us under

info (at) spray (dot) io

8.4 Commercial Support

For more details regarding commercial support, please contact us.

215

https://groups.google.com/group/spray-user/
https://twitter.com/sprayio
http://www.typesafe.com/company/contact


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

216 Chapter 8. Contact



Bibliography

[ab17f00] use util.Timestamp instead of longs for timeout checking

[f6b0292] get rid of Http.Register.keepOpenOnPeerClosed, fixes #401

[0b5ef36] add max-encryption-chunk-size setting to ClientConnectionSettings and ServerSettings

[98365ff] Implement redirection following (issue #132)

[d738e54] require services to respond to ChunkedRequestStart with RegisterChunkHandler, fixes #473

[da29cdf] “privatize” all classes/objects not meant to be part of public API

[6fec00c] only render default User-Agent if no such header was explicit given, fixes #462

[ba1ae77] upgrade to new HttpEntity / HttpData model

[b2fee8d] make Content-Length a long value, fixes #443

[4b48875] introduce dedicated exceptions for connection failure and request timeout for host-level API

[9abbcf6] when creating HostConnectorSettings expect client settings at spray.can.client, fixes #408

[e922cd4] move client.ssl-encryption setting from reference.conf into Http.Connect message, fixes #396

[a47f3b0] replace InetSocketAddress in HostConnectorSetup with hostname/port pair, fixes #394

[80982d4] Publish SSLSessionEstablished event from SslTlsSupport upon successful SSL handshaking

[e486900] Add SSLSessionInfo header to requests on server and responses on client

[da12531] model user-agent-header value as User-Agent to fail fast, fixes #458

[015f3c6] add HttpOrigin and use it for Access-Control-Allow-Origin and Origin headers, fixes #579

[e058a43] allow creation of custom MediaTypes with ‘*’ as a subtype when called by the parser, fixes #529

[d2b8bba] introduce a distinction between ”?key=” and ”?key” in queries, fixes #460

[ad593d1] make multipart form-data more flexible but have it adhere to the RFC more strictly

[5d78dae] add CONNECT method and support for custom HTTP methods, closes #428

[c6f49cc] introduce HttpData model replacing the byte array in HttpBody and MessageChunk, closes #365

[f625b5a] add small extensions to Uri model

[88a25f7] make only standard charsets available as constants, fixes #340

[a915b8f] fix raw queries still performing %-decoding and not being rendered as raw, fixes #330

217

http://github.com/spray/spray/commit/ab17f00
http://github.com/spray/spray/commit/f6b0292
http://github.com/spray/spray/commit/0b5ef36
http://github.com/spray/spray/commit/98365ff
http://github.com/spray/spray/commit/d738e54
http://github.com/spray/spray/commit/da29cdf
http://github.com/spray/spray/commit/6fec00c
http://github.com/spray/spray/commit/ba1ae77
http://github.com/spray/spray/commit/b2fee8d
http://github.com/spray/spray/commit/4b48875
http://github.com/spray/spray/commit/9abbcf6
http://github.com/spray/spray/commit/e922cd4
http://github.com/spray/spray/commit/a47f3b0
http://github.com/spray/spray/commit/80982d4
http://github.com/spray/spray/commit/e486900
http://github.com/spray/spray/commit/da12531
http://github.com/spray/spray/commit/015f3c6
http://github.com/spray/spray/commit/e058a43
http://github.com/spray/spray/commit/d2b8bba
http://github.com/spray/spray/commit/ad593d1
http://github.com/spray/spray/commit/5d78dae
http://github.com/spray/spray/commit/c6f49cc
http://github.com/spray/spray/commit/f625b5a
http://github.com/spray/spray/commit/88a25f7
http://github.com/spray/spray/commit/a915b8f


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

[d8a9ee4] add support for Accept-Header extensions and media-type parameters, closes #310

[a9e0d2c] support for custom status codes, fixes #564

[443b0d8] remodel HttpIp to RemoteAddress, fixes #638

[4d787dc] remove superfluous RequestContext::complete overloads

[1480e73] improve PathMatcher infrastructure

[7a36de5] CompletionMagnet: gone, streamlining completion API: accomplished

[d86cb80] remove layer of *Aux classes by type aliases for simplicity

[b145ced] upgrade to new ToResponseMarshaller, closes #293

[9c9b976] AuthenticationFailedRejection now directly contains challenge headers to return, fixes #538

[ab35761] fix getFromDirectory and getFromResourceDirectory not working properly for URIs with encoded chars

[e3defb4] have encodeResponse automatically tie in autoChunkFileBytes

[9c11228] small improvement of require and hrequire modifiers on directives

[ead4a70] Added detach directive which executes its inner route in a future. Removed detachTo directive. Fixes #240.

[8c91851] PathMatcher.(flat)map => h(flat)map, introduce map/flatMap, fixes #274

[034779d] Render WWW-Authenticate header also for rejected credentials, fixes #188

[ee7fe47] redefine PathMatchers.Empty as PathMatchers.Neutral with explicit type annotation, fixes #339

[3ff3471] change PathMatcher.apply, add PathMatcher.provide method, cosmetic improvements

[8ee49d7] add PathMatcher::repeated modifier, closes #636

[f0cbf25] add pathEnd and pathEndOrSingleSlash directive, closes #628

[ae17d18] create FormFile as an easy way to access uploaded file information for forms, fixes #327

[9d27559] rename BodyPart.getName -> BodyPart.name, add BodyPart.dispositionParameterValue

[fad2ff2] polish MediaType model, fix tests, smaller improvements

[f8f5b6d] support content negotiation, fixes #167

[ebaa580] enable FEOU and FSOD to be interchanged in the usual cases, fixes #426

[ebe3e97] remove MetaUnmarshallers.scala, fold only member into FormDataUnmarshallers.scala

[dd51be5] change default charset for application/x-www-form-urlencoded to utf8, fixes #526

[f5b1535] decode should remove Content-Encoding header from message

[adf9170] move unmarshal and unmarshalUnsafe to Unmarshaller and add unmarshaller method

[f5997f8] flexibilize RequestBuilding and ResponseTransformation by generalizing the ~> operator

[01c4aa9] major refactoring of SslTlsSupport, fixes #544

[5f23219] improve DynamicPipelines trait

[76345ba] abort connection on idle-timeout, fixes #539

[2c77d8f] add support for compound write commands (Tcp.CompoundWrite)

[6a99cb7] move result.awaitResult call from injectIntoRoute into check, fixes #205

[72c9397] in RouteTests always convert URIs into absolute ones, fixes #464

[680fde0] enable custom ExceptionHandlers in routing tests

218 Bibliography

http://github.com/spray/spray/commit/d8a9ee4
http://github.com/spray/spray/commit/a9e0d2c
http://github.com/spray/spray/commit/443b0d8
http://github.com/spray/spray/commit/4d787dc
http://github.com/spray/spray/commit/1480e73
http://github.com/spray/spray/commit/7a36de5
http://github.com/spray/spray/commit/d86cb80
http://github.com/spray/spray/commit/b145ced
http://github.com/spray/spray/commit/9c9b976
http://github.com/spray/spray/commit/ab35761
http://github.com/spray/spray/commit/e3defb4
http://github.com/spray/spray/commit/9c11228
http://github.com/spray/spray/commit/ead4a70
http://github.com/spray/spray/commit/8c91851
http://github.com/spray/spray/commit/034779d
http://github.com/spray/spray/commit/ee7fe47
http://github.com/spray/spray/commit/3ff3471
http://github.com/spray/spray/commit/8ee49d7
http://github.com/spray/spray/commit/f0cbf25
http://github.com/spray/spray/commit/ae17d18
http://github.com/spray/spray/commit/9d27559
http://github.com/spray/spray/commit/fad2ff2
http://github.com/spray/spray/commit/f8f5b6d
http://github.com/spray/spray/commit/ebaa580
http://github.com/spray/spray/commit/ebe3e97
http://github.com/spray/spray/commit/dd51be5
http://github.com/spray/spray/commit/f5b1535
http://github.com/spray/spray/commit/adf9170
http://github.com/spray/spray/commit/f5997f8
http://github.com/spray/spray/commit/01c4aa9
http://github.com/spray/spray/commit/5f23219
http://github.com/spray/spray/commit/76345ba
http://github.com/spray/spray/commit/2c77d8f
http://github.com/spray/spray/commit/6a99cb7
http://github.com/spray/spray/commit/72c9397
http://github.com/spray/spray/commit/680fde0


spray, Release 𝑉 𝐸𝑅𝑆𝐼𝑂𝑁

[3b4ac55] small clean-up, remove duplication with httpx RequestBuilding

[e234dd9] remove SprayActorLogging and UtilSettings, simplify LoggingContext, fixes #421

[b0b90b3] Swap Duration.Undefined by Duration.Inf, fixes #440

[78d7e4a] improve *Settings infrastructure

Bibliography 219

http://github.com/spray/spray/commit/3b4ac55
http://github.com/spray/spray/commit/e234dd9
http://github.com/spray/spray/commit/b0b90b3
http://github.com/spray/spray/commit/78d7e4a

	What is spray?
	Principles
	Modules
	Philosophy

	Getting Started
	spray for Web Development
	This Site

	Other Resources
	Documentation
	spray-caching
	spray-can
	spray-client
	spray-http
	spray-httpx
	spray-io
	spray-routing
	spray-servlet
	spray-testkit
	spray-util

	Project Info
	Current Versions
	Migration from M8
	Maven Repository
	Contributing
	Changelog
	Credits
	References
	Sponsors
	License
	Community Projects

	Blog
	spray on the Raspberry Pi
	spray 1.0-M8 / 1.1-M8 / 1.2-M8 released
	Benchmarking spray
	The Magnet Pattern
	Welcome to the spray Blog

	Contact
	Mailing List
	Twitter
	Email
	Commercial Support

	Bibliography

