
spray
Release $VERSION$

Sep 27, 2017

Contents

1 Documentation 3
1.1 spray-caching . 3
1.2 spray-can . 5
1.3 spray-client . 28
1.4 spray-http . 30
1.5 spray-httpx . 32
1.6 spray-io . 43
1.7 spray-routing . 44
1.8 spray-servlet . 173
1.9 spray-testkit . 179
1.10 spray-util . 183

2 Project Info 185
2.1 Current Versions . 185
2.2 Maven Repository . 185

i

ii

spray, Release $VERSION$

stub

Contents 1

spray, Release $VERSION$

2 Contents

CHAPTER 1

Documentation

This is the index of all documentation chapters for the different modules of the spray suite:

spray-caching

spray-caching provides a lightweight and fast in-memory caching functionality based on Akka Futures and concur-
rentlinkedhashmap. The primary use-case is the “wrapping” of an expensive operation with a caching layer that, based
on a certain key of type K, runs the wrapped operation only once and returns the the cached value for all future accesses
for the same key (as long as the respective entry has not expired).

The central idea of a spray-caching cache is to not store the actual values of type T themselves in the cache but rather
corresponding Akka Futures, i.e. instances of type Future[T]. This approach has the advantage of nicely taking
care of the thundering herds problem where many requests to a particular cache key (e.g. a resource URI) arrive before
the first one could be completed. Normally (without special guarding techniques, like so-called “cowboy” entries) this
can cause many requests to compete for system resources while trying to compute the same result thereby greatly
reducing overall system performance. When you use a spray-caching cache the very first request that arrives for a
certain cache key causes a future to be put into the cache which all later requests then “hook into”. As soon as the first
request completes all other ones complete as well. This minimizes processing time and server load for all requests.

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-caching depends on

• spray-util

• concurrentlinkedhashmap

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

Installation

The Maven Repository chapter contains all the info about how to pull spray-caching into your classpath.

3

http://code.google.com/p/concurrentlinkedhashmap/
http://code.google.com/p/concurrentlinkedhashmap/
http://code.google.com/p/concurrentlinkedhashmap/

spray, Release $VERSION$

Afterwards just import spray.caching._ to bring all relevant identifiers into scope.

The Cache Interface

All spray-caching cache implementations implement the Cache trait, which allows you to interact with the cache
through nine methods:

• def apply(key: Any)(expr: => V): Future[V] wraps an “expensive” expression with
caching support. Note, that the generation expression is never run inside a Future with this overload. In-
stead, either, the cache already contains an entry for the key in which case the existing result is returned, or the
generating expression is synchronously run to produce the value.

• def apply(key: Any)(future: => Future[V]): Future[V] is similar, but allows the ex-
pression to produce the future itself.

• def apply(key: Any)(func: Promise[V] => Unit): Future[V] provides a “push-
style” alternative.

• def get(key: Any): Option[Future[V]] retrieves the future instance that is currently in the
cache for the given key. Returns None if the key has no corresponding cache entry.

• def remove(key: Any): Option[Future[V]] removes the cache item for the given key. Returns
the removed item if it was found (and removed).

• def clear() clears the cache by removing all entries.

• def size(): Int returns the number of entries.

• def keys(): Set[Any] returns the current keys as an unordered set.

• def ascendingKeys(limit: Option[Int]): Iterator[Any] allows one to iterate through
the keys in order from the least recently used to the most recently used.

Note that the apply overloads require an implicit ExecutionContext to be in scope.

Example

import scala.concurrent.Future
import akka.actor.ActorSystem
import spray.caching.{LruCache, Cache}
import spray.util._

val system = ActorSystem()
import system.dispatcher

// if we have an "expensive" operation
def expensiveOp(): Double = new util.Random().nextDouble()

// and a Cache for its result type
val cache: Cache[Double] = LruCache()

// we can wrap the operation with caching support
// (providing a caching key)
def cachedOp[T](key: T): Future[Double] = cache(key) {
expensiveOp()

}

// and profit

4 Chapter 1. Documentation

https://github.com/spray/spray/blob/v1.2-M8/spray-caching/src/main/scala/spray/caching/Cache.scala

spray, Release $VERSION$

cachedOp("foo").await === cachedOp("foo").await
cachedOp("bar").await !== cachedOp("foo").await

Cache Implementations

spray-caching comes with two implementations of the Cache interface, SimpleLruCache and ExpiringLruCache, both
featuring last-recently-used cache eviction semantics and both internally wrapping a concurrentlinkedhashmap. They
difference between the two only consists of whether they support time-based entry expiration or not.

The easiest way to construct a cache instance is via the applymethod of the LruCache object, which has the follow-
ing signature and creates a new ExpiringLruCache or SimpleLruCache depending on whether timeToLive
and/or timeToIdle are finite (= expiring) or infinite:

/**
* Creates a new [[spray.caching.ExpiringLruCache]] or

* [[spray.caching.SimpleLruCache]] instance depending on whether

* a non-zero and finite timeToLive and/or timeToIdle is set or not.

*/
def apply[V](maxCapacity: Int = 500,

initialCapacity: Int = 16,
timeToLive: Duration = Duration.Inf,
timeToIdle: Duration = Duration.Inf): Cache[V] = {

SimpleLruCache

This cache implementation has a defined maximum number of entries it can store. After the maximum capacity is
reached new entries cause old ones to be evicted in a last-recently-used manner, i.e. the entries that haven’t been
accessed for the longest time are evicted first.

ExpiringLruCache

This implementation has the same limited capacity behavior as the SimpleLruCache but in addition supports time-
to-live as well as time-to-idle expiration. The former provides an upper limit to the time period an entry is allowed to
remain in the cache while the latter limits the maximum time an entry is kept without having been accessed. If both
values are finite the time-to-live has to be strictly greater than the time-to-idle.

Note: Expired entries are only evicted upon next access (or by being thrown out by the capacity constraint), so they
might prevent garbage collection of their values for longer than expected.

spray-can

The spray-can module provides a low-level, low-overhead, high-performance HTTP server and client built on top of
spray-io. Both are fully asynchronous, non-blocking and built 100% in Scala on top of Akka. Since their APIs are
centered around Akka abstractions such as Actors and Futures they are very easy to integrate into your Akka-based
applications.

1.2. spray-can 5

https://github.com/spray/spray/blob/v1.2-M8/spray-caching/src/main/scala/spray/caching/Cache.scala
https://github.com/spray/spray/blob/v1.2-M8/spray-caching/src/main/scala/spray/caching/LruCache.scala
http://code.google.com/p/concurrentlinkedhashmap/

spray, Release $VERSION$

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-can depends on

• spray-io

• spray-http

• spray-util

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

Installation

The Maven Repository chapter contains all the info about how to pull spray-can into your classpath.

Once you have spray-can available you communicate with it mostly via the IO(Http) extension it provides. See the
respective chapter for more information on this-

Configuration

Just like Akka spray-can relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-can module:

###################################
spray-can Reference Config File
###################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

spray.can {

server {
The value of the `Server` header to produce.
Set to the empty string to disable rendering of the server header.
server-header = spray-can/${spray.version}

Enables/disables SSL encryption.
If enabled the server uses the implicit `ServerSSLEngineProvider` member
of the `Bind` command to create `SSLEngine` instances for the underlying
IO connection.
ssl-encryption = off

The maximum number of requests that are accepted (and dispatched to
the application) on one single connection before the first request
has to be completed.
Incoming requests that would cause the pipelining limit to be exceeded
are not read from the connections socket so as to build up "back-pressure"
to the client via TCP flow control.

6 Chapter 1. Documentation

https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.1.4/general/configuration.html
http://doc.akka.io/docs/akka/2.1.4/general/configuration.html

spray, Release $VERSION$

A setting of 1 disables HTTP pipelining, since only one request per
connection can be "open" (i.e. being processed by the application) at any
time. Set to higher values to enable HTTP pipelining.
Set to 'disabled' for completely disabling pipelining limits
(not recommended on public-facing servers due to risk of DoS attacks).
This value must be > 0 and <= 128.
pipelining-limit = 1

The time after which an idle connection will be automatically closed.
Set to `infinite` to completely disable idle connection timeouts.
idle-timeout = 60 s

If a request hasn't been responded to after the time period set here
a `spray.http.Timedout` message will be sent to the timeout handler.
Set to `infinite` to completely disable request timeouts.
request-timeout = 20 s

After a `Timedout` message has been sent to the timeout handler and the
request still hasn't been completed after the time period set here
the server will complete the request itself with an error response.
Set to `infinite` to disable timeout timeouts.
timeout-timeout = 2 s

The period during which a service must respond to a `ChunkedRequestStart`
→˓message

with a `RegisterChunkHandler` message. During the registration period reading
→˓from

the network is suspended. It is still possible that some chunks have already
→˓been

received which will be buffered until the registration is received or the
→˓timeout is

triggered. If the timeout is triggered the connection is immediately aborted.
chunkhandler-registration-timeout = 500 ms

The path of the actor to send `spray.http.Timedout` messages to.
If empty all `Timedout` messages will go to the "regular" request
handling actor.
timeout-handler = ""

The "granularity" of timeout checking for both idle connections timeouts
as well as request timeouts, should rarely be needed to modify.
If set to `infinite` request and connection timeout checking is disabled.
reaping-cycle = 250 ms

Enables/disables support for statistics collection and querying.
Even though stats keeping overhead is small,
for maximum performance switch off when not needed.
stats-support = on

Enables/disables the addition of a `Remote-Address` header
holding the clients (remote) IP address.
remote-address-header = off

Enables/disables the addition of a `Raw-Request-URI` header holding the
original raw request URI as the client has sent it.
raw-request-uri-header = off

Enables/disables automatic handling of HEAD requests.

1.2. spray-can 7

spray, Release $VERSION$

If this setting is enabled the server dispatches HEAD requests as GET
requests to the application and automatically strips off all message
bodies from outgoing responses.
Note that, even when this setting is off the server will never send
out message bodies on responses to HEAD requests.
transparent-head-requests = on

Enables/disables an alternative response streaming mode that doesn't
use `Transfer-Encoding: chunked` but rather renders the individual
MessageChunks coming in from the application as parts of the original
response entity.
Enabling this mode causes all connections to be closed after a streaming
response has been finished since there is no other way to signal the
response end to the client.
Note that chunkless-streaming is implicitly enabled when streaming
responses to HTTP/1.0 clients (since they don't support
`Transfer-Encoding: chunked`)
chunkless-streaming = off

Enables/disables the returning of more detailed error messages to
the client in the error response.
Should be disabled for browser-facing APIs due to the risk of XSS attacks
and (probably) enabled for internal or non-browser APIs.
Note that spray will always produce log messages containing the full
error details.
verbose-error-messages = off

Enables/disables the logging of the full (potentially multiple line)
error message to the server logs.
If disabled only a single line will be logged.
verbose-error-logging = off

If this setting is non-zero the HTTP server automatically aggregates
incoming request chunks into full HttpRequests before dispatching them to
the application. If the size of the aggregated requests surpasses the
specified limit the server responds with a `413 Request Entity Too Large`
error response before closing the connection.
Set to zero to disable automatic request chunk aggregation and have
ChunkedRequestStart, MessageChunk and ChunkedMessageEnd messages be
dispatched to the handler.
request-chunk-aggregation-limit = 1m

The initial size if the buffer to render the response headers in.
Can be used for fine-tuning response rendering performance but probably
doesn't have to be fiddled with in most applications.
response-header-size-hint = 512

For HTTPS connections this setting specified the maximum number of
bytes that are encrypted in one go. Large responses are broken down in
chunks of this size so as to already begin sending before the response has
been encrypted entirely.
max-encryption-chunk-size = 1m

The time period within which the TCP binding process must be completed.
Set to `infinite` to disable.
bind-timeout = 1s

The time period within which the TCP unbinding process must be completed.

8 Chapter 1. Documentation

spray, Release $VERSION$

Set to `infinite` to disable.
unbind-timeout = 1s

The time period within which a connection handler must have been
registered after the bind handler has received a `Connected` event.
Set to `infinite` to disable.
registration-timeout = 1s

The time after which a connection is aborted (RST) after a parsing error
occurred. The timeout prevents a connection which is already known to be
erroneous from receiving evermore data even if all of the data will be ignored.
However, in case of a connection abortion the client usually doesn't properly
receive the error response. This timeout is a trade-off which allows the client
some time to finish its request and receive a proper error response before the
connection is forcibly closed to free resources.
parsing-error-abort-timeout = 2s

If this setting is empty the server only accepts requests that carry a
non-empty `Host` header. Otherwise it responds with `400 Bad Request`.
Set to a non-empty value to be used in lieu of a missing or empty `Host`
header to make the server accept such requests.
Note that the server will never accept HTTP/1.1 request without a `Host`
header, i.e. this setting only affects HTTP/1.1 requests with an empty
`Host` header as well as HTTP/1.0 requests.
Examples: `www.spray.io` or `example.com:8080`
default-host-header = ""

Enables/disables automatic back-pressure handling by write buffering and
receive throttling
automatic-back-pressure-handling = on

back-pressure {
The reciprocal rate of requested Acks per NoAcks. E.g. the default value
'10' means that every 10th write request is acknowledged. This affects the
number of writes each connection has to buffer even in absence of back-

→˓pressure.
noack-rate = 10

The lower limit the write queue size has to shrink to before reads are
→˓resumed.

Use 'infinite' to disable the low-watermark so that reading is resumed
→˓instantly

after the next successful write.
reading-low-watermark = infinite

}

Enables more verbose DEBUG logging for debugging SSL related issues.
ssl-tracing = off

Modify to tweak parsing settings on the server-side only.
parsing = ${spray.can.parsing}

}

client {
The default value of the `User-Agent` header to produce if no
explicit `User-Agent`-header was included in a request.
If this value is the empty string and no header was included in
the request, no `User-Agent` header will be rendered at all.

1.2. spray-can 9

spray, Release $VERSION$

user-agent-header = spray-can/${spray.version}

The time after which an idle connection will be automatically closed.
Set to `infinite` to completely disable idle timeouts.
idle-timeout = 60 s

The max time period that a client connection will be waiting for a response
before triggering a request timeout. The timer for this logic is not started
until the connection is actually in a state to receive the response, which
may be quite some time after the request has been received from the
application!
There are two main reasons to delay the start of the request timeout timer:
1. On the host-level API with pipelining disabled:
If the request cannot be sent immediately because all connections are
currently busy with earlier requests it has to be queued until a
connection becomes available.
2. With pipelining enabled:
The request timeout timer starts only once the response for the
preceding request on the connection has arrived.
Set to `infinite` to completely disable request timeouts.
request-timeout = 20 s

the "granularity" of timeout checking for both idle connections timeouts
as well as request timeouts, should rarely be needed to modify.
If set to `infinite` request and connection timeout checking is disabled.
reaping-cycle = 250 ms

If this setting is non-zero the HTTP client connections automatically
aggregate incoming response chunks into full HttpResponses before
dispatching them to the application.
If the size of the aggregated response surpasses the specified limit the
HTTP client connection is closed and an error returned.
Set to zero to disable automatic request chunk aggregation and have
ChunkedResponseStart, MessageChunk and ChunkedMessageEnd messages be
dispatched to the application.
response-chunk-aggregation-limit = 1m

Enables/disables an alternative request streaming mode that doesn't
use `Transfer-Encoding: chunked` but rather renders the individual
MessageChunks coming in from the application as parts of the original
request entity.
Enabling this mode causes all requests to require an explicit `Content-Length`
header for streaming requests.
Note that chunkless-streaming is implicitly enabled when streaming
HTTP/1.0 requests since they don't support `Transfer-Encoding: chunked`.
chunkless-streaming = off

The initial size if the buffer to render the request headers in.
Can be used for fine-tuning request rendering performance but probably
doesn't have to be fiddled with in most applications.
request-header-size-hint = 512

For HTTPS connections this setting specified the maximum number of
bytes that are encrypted in one go. Large requests are broken down in
chunks of this size so as to already begin sending before the request has
been encrypted entirely.
max-encryption-chunk-size = 1m

10 Chapter 1. Documentation

spray, Release $VERSION$

The time period within which the TCP connecting process must be completed.
Set to `infinite` to disable.
connecting-timeout = 10s

The proxy configurations to be used for requests with the specified
scheme.
proxy {

Proxy settings for unencrypted HTTP requests
Set to 'none' to always connect directly, 'default' to use the system
settings as described in http://docs.oracle.com/javase/6/docs/technotes/

→˓guides/net/proxies.html
or specify the proxy host, port and non proxy hosts as demonstrated
in the following example:
http {
host = myproxy.com
port = 8080
non-proxy-hosts = ["*.direct-access.net"]
}
http = default

Proxy settings for HTTPS requests (currently unsupported)
https = default

}

Enables more verbose DEBUG logging for debugging SSL related issues.
ssl-tracing = off

Modify to tweak parsing settings on the client-side only.
parsing = ${spray.can.parsing}

}

host-connector {
The maximum number of parallel connections that an `HttpHostConnector`
is allowed to establish to a host. Must be greater than zero.
max-connections = 4

The maximum number of times an `HttpHostConnector` attempts to repeat
failed requests (if the request can be safely retried) before
giving up and returning an error.
max-retries = 5

Configures redirection following.
If set to zero redirection responses will not be followed, i.e. they'll be

→˓returned to the user as is.
If set to a value > zero redirection responses will be followed up to the given

→˓number of times.
If the redirection chain is longer than the configured value the first

→˓redirection response that is
is not followed anymore is returned to the user as is.
max-redirects = 0

If this setting is enabled, the `HttpHostConnector` pipelines requests
across connections, otherwise only one single request can be "open"
on a particular HTTP connection.
pipelining = off

The time after which an idle `HttpHostConnector` (without open
connections) will automatically terminate itself.

1.2. spray-can 11

spray, Release $VERSION$

Set to `infinite` to completely disable idle timeouts.
idle-timeout = 30 s

Modify to tweak client settings for this host-connector only.
client = ${spray.can.client}

}

The (default) configuration of the HTTP message parser for the server and
the client.
IMPORTANT: These settings (i.e. children of `spray.can.parsing`) can't be directly
overridden in `application.conf` to change the parser settings for client and

→˓server
altogether (see https://github.com/spray/spray/issues/346). Instead, override the
concrete settings beneath `spray.can.server.parsing` and `spray.can.client.

→˓parsing`
where these settings are copied to.
parsing {
The limits for the various parts of the HTTP message parser.
max-uri-length = 2k
max-response-reason-length = 64
max-header-name-length = 64
max-header-value-length = 8k
max-header-count = 64
max-content-length = 8m
max-chunk-ext-length = 256
max-chunk-size = 1m

Sets the strictness mode for parsing request target URIs.
The following values are defined:
#
`strict`: RFC3986-compliant URIs are required,
a 400 response is triggered on violations
#
`relaxed`: all visible 7-Bit ASCII chars are allowed
#
`relaxed-with-raw-query`: like `relaxed` but additionally
the URI query is not parsed, but delivered as one raw string
as the `key` value of a single Query structure element.
#
uri-parsing-mode = strict

Enables/disables the logging of warning messages in case an incoming
message (request or response) contains an HTTP header which cannot be
parsed into its high-level model class due to incompatible syntax.
Note that, independently of this settings, spray will accept messages
with such headers as long as the message as a whole would still be legal
under the HTTP specification even without this header.
If a header cannot be parsed into a high-level model instance it will be
provided as a `RawHeader`.
illegal-header-warnings = on

limits for the number of different values per header type that the
header cache will hold
header-cache {

default = 12
Content-MD5 = 0
Date = 0
If-Match = 0

12 Chapter 1. Documentation

spray, Release $VERSION$

If-Modified-Since = 0
If-None-Match = 0
If-Range = 0
If-Unmodified-Since = 0
User-Agent = 32

}

Sets the size starting from which incoming http-messages will be delivered
in chunks regardless of whether chunking is actually used on the wire.
Set to infinite to disable auto chunking.
incoming-auto-chunking-threshold-size = infinite

Enables/disables inclusion of an SSL-Session-Info header in parsed
messages over SSL transports (i.e., HttpRequest on server side and
HttpResponse on client side).
ssl-session-info-header = off

}

Fully qualified config path which holds the dispatcher configuration
to be used for the HttpManager.
manager-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
to be used for the HttpClientSettingsGroup actors.
settings-group-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
to be used for the HttpHostConnector actors.
host-connector-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
to be used for HttpListener actors.
listener-dispatcher = "akka.actor.default-dispatcher"

Fully qualified config path which holds the dispatcher configuration
to be used for HttpServerConnection and HttpClientConnection actors.
connection-dispatcher = "akka.actor.default-dispatcher"

}

HTTP Server

The spray-can HTTP server is an embedded, actor-based, fully asynchronous, low-level, low-overhead and high-
performance HTTP/1.1 server implemented on top of Akka IO / spray-io.

It sports the following features:

• Low per-connection overhead for supporting many thousand concurrent connections

• Efficient message parsing and processing logic for high throughput applications

• Full support for HTTP persistent connections

• Full support for HTTP pipelining

• Full support for asynchronous HTTP streaming (i.e. “chunked” transfer encoding)

• Optional SSL/TLS encryption

• Actor-based architecture and API for easy integration into your Akka applications

1.2. spray-can 13

http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html
http://en.wikipedia.org/wiki/HTTP_persistent_connection
http://en.wikipedia.org/wiki/HTTP_pipelining

spray, Release $VERSION$

Design Philosophy

The spray-can HttpServer is scoped with a clear focus on the essential functionality of an HTTP/1.1 server:

• Connection management

• Message parsing and header separation

• Timeout management (for requests and connections)

• Response ordering (for transparent pipelining support)

All non-core features of typical HTTP servers (like request routing, file serving, compression, etc.) are left to the next-
higher layer in the application stack, they are not implemented by spray-can itself. Apart from general focus this design
keeps the server small and light-weight as well as easy to understand and maintain. It also makes a spray-can HTTP
server a perfect “container” for a spray-routing application, since spray-can and spray-routing nicely complement and
interface into each other.

Basic Architecture

The spray-can HTTP server is implemented by two types of Akka actors, which sit on top of Akka IO. When you tell
spray-can to start a new server instance on a given port an HttpListener actor is started, which accepts incoming
connections and for each one spawns a new HttpServerConnection actor, which then manages the connection
for the rest of its lifetime. These connection actors process the requests coming in across their connection and dispatch
them as immutable spray-http HttpRequest instances to a “handler” actor provided by your application. The
handler can complete a request by simply replying with an HttpResponse instance:

def receive = {
case HttpRequest(GET, Uri.Path("/ping"), _, _, _) =>
sender() ! HttpResponse(entity = "PONG")

}

Your code never deals with the HttpListener and HttpServerConnection actor classes directly, in fact
they are marked private to the spray-can package. All communication with these actors happens purely via actor
messages, the majority of which are defined in the spray.can.Http object.

Starting

A spray-can HTTP server is started by sending an Http.Bind command to the Http extension:

import akka.io.IO
import spray.can.Http

implicit val system = ActorSystem()

val myListener: ActorRef = // ...

IO(Http) ! Http.Bind(myListener, interface = "localhost", port = 8080)

With the Http.Bind command you register an application-level “listener” actor and specify the interface and port to
bind to. Additionally the Http.Bind command also allows you to define socket options as well as a larger number
of settings for configuring the server according to your needs.

The sender of the Http.Bind command (e.g. an actor you have written) will receive an Http.Bound reply after
the HTTP layer has successfully started the server at the respective endpoint. In case the bind fails (e.g. because the
port is already busy) an Http.CommandFailed message is dispatched instead.

14 Chapter 1. Documentation

http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html
https://github.com/spray/spray/blob/release/1.2/spray-can/src/main/scala/spray/can/Http.scala#L31

spray, Release $VERSION$

The sender of the Http.Bound confirmation event is spray-can‘s HttpListener instance. You will need this
ActorRef if you want to stop the server later.

Stopping

To explicitly stop the server, send an Http.Unbind command to the HttpListener instance (the ActorRef for
this instance is available as the sender of the Http.Bound confirmation event from when the server was started).

The listener will reply with an Http.Unbound event after successfully unbinding from the port (or with an Http.
CommandFailed in the case of error). At that point no further requests will be accepted by the server.

Any requests which were in progress at the time will proceed to completion. When the last request has terminated, the
HttpListener instance will exit. You can monitor for this (e.g. so that you can shutdown the ActorSystem) by
watching the listener actor and awaiting a Terminated message.

Message Protocol

After having successfully bound an HttpListener your application communicates with the spray-can-level con-
nection actors via a number of actor messages that are explained in this section.

Request-Response Cycle

When a new connection has been accepted the application-level listener, which was registered with the Http.Bind
command, receives an Http.Connected event message from the connection actor. The application must reply
to it with an Http.Register command within the configured registration-timeout period, otherwise the
connection will be closed.

With the Http.Register command the application tells the connection actor which actor should handle incoming
requests. The application is free to register the same actor for all connections (a “singleton handler”), a new one for
every connection (“per-connection handlers”) or anything in between. After the connection actor has received the
Http.Register command it starts reading requests from the connection and dispatches them as spray.http.
HttpRequestPart messages to the handler. The handler actor should then process the request according to the
application logic and respond by sending an HttpResponsePart instance to the sender of the request.

The ActorRef used as the sender of an HttpRequestPart received by the handler is unique to the request, i.e.
several requests, even when coming in across the same connection, will appear to be sent from different senders.
spray-can uses this sender ActorRef to coalesce the response with the request, so you cannot send several responses
to the same sender. However, the different request parts of chunked requests arrive from the same sender, and the
different response parts of a chunked response need to be sent to the same sender as well.

Caution: Since the ActorRef used as the sender of a request is an UnregisteredActorRef it is not reachable
remotely. This means that the actor designated as handler by the application needs to live in the same JVM as the
HTTP extension.

Chunked Requests

If the request-chunk-aggregation-limit config setting is set to zero the connection actor also dispatches
the individual request parts of chunked requests to the handler actor. In these cases a full request consists of the
following messages:

• One ChunkedRequestStart

1.2. spray-can 15

spray, Release $VERSION$

• Zero or more MessageChunks

• One ChunkedMessageEnd

The timer for checking request handling timeouts (if not configured to infinite) only starts running when the final
ChunkedMessageEnd message was dispatched to the handler.

Chunked Responses

Alternatively to a single HttpResponse instance the handler can choose to respond to the request sender with the
following sequence of individual messages:

• One ChunkedResponseStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The timer for checking request handling timeouts (if not configured to infinite) will stop running as soon as the
initial ChunkedResponseStart message has been received from the handler, i.e. there is currently no timeout
checking for and in between individual response chunks.

Request Timeouts

If the handler does not respond to a request within the configured request-timeout period a spray.http.
Timedout message is sent to the timeout handler, which can be the “regular” handler itself or another actor (depend-
ing on the timeout-handler config setting). The timeout handler then has the chance to complete the request
within the time period configured as timeout-timeout. Only if the timeout handler also misses its deadline for
completing the request will the connection actor complete the request itself with a “hard-coded” error response.

In order to change the respective config setting for that connection only the application can send the following messages
to the sender of a request (part) or the connection actor:

• spray.io.ConnectionTimeouts.SetIdleTimeout

• spray.http.SetRequestTimeout

• spray.http.SetTimeoutTimeout

Closed Notifications

When a connection is closed, for whatever reason, the connection actor dispatches one of five defined Http.
ConnectionClosed event message to the application (see the Common Behavior chapter for more info).

Exactly which actor receives it depends on the current state of request processing. The connection actor sends Http.
ConnectionClosed events coming in from the underlying IO layer

• to the handler actor

• to the request chunk handler if one is defined and no response part was yet received

• to the sender of the last received response part

– if the ACK for an ACKed response part has not yet been dispatched

– if a response chunk stream has not yet been finished (with a ChunkedMessageEnd)

16 Chapter 1. Documentation

spray, Release $VERSION$

Note: The application can always choose to actively close a connection by sending one of the three defined Http.
CloseCommand messages to the sender of a request or the connection actor (see Common Behavior). However,
during normal operation it is encouraged to make use of the Connection header to signal to the connection actor
whether or not the connection is to be closed after the response has been sent.

Server Statistics

If the stats-support config setting is enabled the server will continuously count connections, requests, timeouts
and other basic statistics. You can ask the HttpListener actor (i.e. the sender ActorRef of the Http.Bound
event message!) to reply with an instance of the spray.can.server.Stats class by sending it an Http.
GetStats command. This is what you will get back:

case class Stats(
uptime: FiniteDuration,
totalRequests: Long,
openRequests: Long,
maxOpenRequests: Long,
totalConnections: Long,
openConnections: Long,
maxOpenConnections: Long,
requestTimeouts: Long)

By sending the listener an Http.ClearStats command message you can trigger a reset of the stats.

HTTP Headers

When a spray-can connection actor receives an HTTP request it tries to parse all its headers into their respective
spray-http model classes. No matter whether this succeeds or not, the connection actor will always pass on all received
headers to the application. Unknown headers as well as ones with invalid syntax (according to spray‘s header parser)
will be made available as RawHeader instances. For the ones exhibiting parsing errors a warning message is logged
depending on the value of the illegal-header-warnings config setting.

When sending out responses the connection actor watches for a Connection header set by the application and
acts accordingly, i.e. you can force the connection actor to close the connection after having sent the response by
including a Connection("close") header. To unconditionally force a connection keep-alive you can explicitly
set a Connection("Keep-Alive") header. If you don’t set an explicit Connection header the connection
actor will keep the connection alive if the client supports this (i.e. it either sent a Connection: Keep-Alive
header or advertised HTTP/1.1 capabilities without sending a Connection: close header).

The following response headers are managed by the spray-can layer itself and as such are ignored if you “manually”
add them to the response (you’ll see a warning in your logs):

• Content-Type

• Content-Length

• Transfer-Encoding

• Date

• Server

There are three exceptions:

1. Responses to HEAD requests that have an empty entity are allowed to contain a user-specified Content-Type
header.

1.2. spray-can 17

spray, Release $VERSION$

2. Responses in ChunkedResponseStart messages that have an empty entity are allowed to contain a user-
specified Content-Type header.

3. Responses in ChunkedResponseStart messages are allowed to contain a user-specified
Content-Length header if spray.can.server.chunkless-streaming is enabled.

Note: The Content-Type header has special status in spray since its value is part of the HttpEntity model
class. Even though the header also remains in the headers list of the HttpRequest sprays higher layers (like
spray-routing) only work with the ContentType value contained in the HttpEntity.

HTTP Pipelining

spray-can fully supports HTTP pipelining. If the configured pipelining-limit is greater than one a connection
actor will accept several requests in a row (coming in across a single connection) and dispatch them to the application
even before the first one has been responded to. This means that several requests will potentially be handled by the
application at the same time.

Since in many asynchronous applications request handling times can be somewhat undeterministic spray-can takes
care of properly ordering all responses coming in from your application before sending them out to “the wire”. I.e.
your application will “see” requests in the order they are coming in but is not required to itself uphold this order when
generating responses.

SSL Support

If enabled via the ssl-encryption config setting the spray-can connection actors pipe all IO traffic through
an SslTlsSupport module, which can perform transparent SSL/TLS encryption. This module is config-
ured via the implicit ServerSSLEngineProvider member on the Http.Bind command message. An
ServerSSLEngineProvider is essentially a function PipelineContext Option[SSLEngine], which
determines whether encryption is to be performed and, if so, which javax.net.ssl.SSLEngine instance is to
be used.

If you’d like to apply some custom configuration to your SSLEngine instances an easy way would be to bring a
custom engine provider into scope, e.g. like this:

import spray.io.ServerSSLEngineProvider

implicit val myEngineProvider = ServerSSLEngineProvider { engine =>
engine.setEnabledCipherSuites(Array("TLS_RSA_WITH_AES_256_CBC_SHA"))
engine.setEnabledProtocols(Array("SSLv3", "TLSv1"))
engine

}

EngineProvider creation also relies on an implicitly available SSLContextProvider, which is defined like this:

trait SSLContextProvider extends (PipelineContext Option[SSLContext])

The default SSLContextProvider simply provides an implicitly available “constant” SSLContext, by de-
fault the SSLContext.getDefault is used. This means that the easiest way to have the server use a custom
SSLContext is to simply bring one into scope implicitly:

import javax.net.ssl.SSLContext

implicit val mySSLContext: SSLContext = {
val context = SSLContext.getInstance("TLS")

18 Chapter 1. Documentation

spray, Release $VERSION$

// context.init(...)
context

}

HTTP Client APIs

Apart from the server-side HTTP abstractions spray-can also contains a client-side HTTP implementation that en-
ables your application to interact with other HTTP servers. And just like on the server side it is actor-based, fully
asynchronous, low-overhead and built on top of Akka IO / spray-io.

As the counterpart of the HTTP Server it shares all core features as well as the basic “low-level” philosophy with the
server-side constructs.

The spray-can client API offers three different levels of abstraction that you can work with (from lowest to highest
level):

Connection-level API

The connection-level API is the lowest-level client-side API spray-can provides. It gives you full control over when
HTTP connections are opened and closed and when requests are to be send across which connection. As such it offers
the highest flexibility at the cost of providing the least convenience.

Opening HTTP Connections

With the connection-level API you open a new HTTP connection to a given host by sending an Http.Connect
command message to the Http extensions as such:

IO(Http) ! Http.Connect("www.spray.io", port = 8080)

Apart from the host name and port the Http.Connect message also allows you to specify socket options and a
larger number of configuration settings for the connection.

Upon receipt of an Http.Connect message spray-can internally spawns a new HttpClientConnection
actor that manages a single HTTP connection across all of its lifetime. Your code never deals with the
HttpClientConnection actor class directly, in fact it is marked private to the spray-can package. All com-
munication with a connection actor happens purely via actor messages, the majority of which are defined in the
spray.can.Http object.

After a new connection actor has been started it tries to open a new TCP connection to the given endpoint and re-
sponds with an Http.Connected event message to the sender of the Http.Connect command as soon as the
connection has been successfully established. If the connection could not be opened for whatever reason an Http.
CommandFailed event is being dispatched instead and the connection actor is stopped.

Request-Response Cycle

Once the connection actor has responded with an Http.Connected event you can send it one or more spray-
http HttpRequestPart messages. The connection actor will serialize them across the connection and wait for
responses. As soon as a response for a request has been received it is dispatched as a HttpResponsePart instance
to the sender of the respective request.

After having received a response for a request the application can decide to send another request across the same
connection (i.e. to the same connection actor) or close the connection and (potentially) open a new one.

1.2. spray-can 19

http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html
https://github.com/spray/spray/blob/release/1.2/spray-can/src/main/scala/spray/can/Http.scala#L29

spray, Release $VERSION$

Closing Connections

Unless some kind of error (or timeout) occurs the connection actor will never actively close an established connection,
even if the response contains a Connection: close header. The application can decide to actively close a
connection by sending the connection actor one of the Http.CloseCommand messages described in the chapter
about Common Behavior.

Close notification events are dispatched to the senders of all requests that still have unfinished responses pending as
well as all actors that might have already sent Http.CloseCommand messages.

Timeouts

If no response to a request is received within the configured request-timeout period the connection actor closes
the connection and dispatches an Http.Closed event message to the senders of all requests that are currently open.

If the connection is closed after the configured idle-timeout has expired the connection actor simply closes the
connection and stops itself. If the application would like to be notified of such events it should “watch” the connection
actor and react to the respective Terminated events (which is a good idea in any case).

In order to change the respective config setting for this connection only the application can send the following messages
to the connection actor:

• spray.io.ConnectionTimeouts.SetIdleTimeout

• spray.http.SetRequestTimeout

Host-level API

As opposed to the Connection-level API the host-level API relieves you from manually opening and closing each
individual HTTP connection. It autonomously manages a configurable pool of connections to one particular server.

Starting an HttpHostConnector

The core of this API is the HttpHostConnector actor, whose class, as with all other spray-can actors, you don’t
get in direct contact with from your application. All communication happens purely via actor messages, the majority
of which are defined in the spray.can.Http object.

You ask spray-can to start a new HttpHostConnector for a given host by sending an Http.
HostConnectorSetup message to the Http extension as such:

IO(Http) ! Http.HostConnectorSetup("www.spray.io", port = 80)

Apart from the host name and port the Http.HostConnectorSetup message also allows you to specify socket
options and a larger number of configuration settings for the connector and the connections it is to manage.

If there is no connector actor running for the given combination of hostname, port and settings spray-can will start
a new one, otherwise the existing one is going to be re-used. The connector will then respond with an Http.
HostConnectorInfo event message, which repeats the connectors ActorRef and setup command (for easy
matching against the result of an “ask”).

20 Chapter 1. Documentation

https://github.com/spray/spray/blob/release/1.2/spray-can/src/main/scala/spray/can/Http.scala#L29

spray, Release $VERSION$

Using an HttpHostConnector

Once you’ve got a hold of the connectors ActorRef you can send it one or more spray-http HttpRequestPart
messages. The connector will send the request across one of the connections it manages according to the following
logic:

• if HTTP pipelining is not enabled (the default) the request is

– dispatched to the first idle connection in the pool if there is one

– dispatched to a newly opened connection if there is no idle one and less than the configured
max-connections have been opened so far

– queued and sent across the first connection that becomes available (i.e. either idle or unconnected) if all
available connections are currently busy with open requests

• if HTTP pipelining is enabled the request is dispatched to

– the first idle connection in the pool if there is one

– a newly opened connection if there is no idle one and less than the configured max-connections have
been opened so far

– the connection with the least open requests if all connections already have requests open

As soon as a response for a request has been received it is dispatched as a HttpResponsePart instance to the sender
of the respective request. If the server indicated that it doesn’t want to reuse the connection for other requests (either
via a Connection: close header on an HTTP/1.1 response or a missing Connection: Keep-Alive
header on an HTTP/1.0 response) the connector actor closes the connection after receipt of the response thereby
freeing up the “slot” for a new connection.

Retrying a Request

If the max-retries connector config setting is greater than zero the connector retries idempotent requests for which
a response could not be successfully retrieved. Idempotent requests are those whose HTTP method is defined to be
idempotent by the HTTP spec, which are all the ones currently modelled by spray-http except for the PATCH and
POST methods.

When a response could not be received for a certain request there are essentially three possible error scenarios:

1. The request got lost on the way to the server.

2. The server experiences a problem while processing the request.

3. The response from the server got lost on the way back.

Since the host connector cannot know which one of these possible reasons caused the problem and therefore PATCH
and POST requests could have already triggered a non-idempotent action on the server these requests cannot be retried.

In these cases, as well as when all retries have not yielded a proper response, the connector dispatches a Status.
Failure message with a RuntimeException holding a respective error message to the sender of the request.

Connector Shutdown

The connector config contains an idle-timeout setting which specifies the time period after which an idle con-
nector, i.e. one without any open connections, will automatically shut itself down. Since, by default, the connections
in the connectors connection pool also have an idle-timeout active an unused connector will eventually be cleaned up
completely if left unused.

1.2. spray-can 21

http://en.wikipedia.org/wiki/HTTP_pipelining
http://en.wikipedia.org/wiki/HTTP_pipelining

spray, Release $VERSION$

However, in order to speed up the shutdown a host connector can be sent an Http.CloseAll command, which
triggers an explicit closing of all connections. After all connections have been properly closed the connector will
dispatch an Http.ClosedAll event message to all senders of Http.CloseAll messages before stopping itself.

A subsequent sending of an identical Http.HostConnectorSetup command to the Http extension will then
trigger the creation of a fresh connector instance.

Request-level API

The request-level API is the most convenient way of using spray-can‘s client-side. It internally builds upon the Host-
level API to provide you with a simple and easy-to-use way of retrieving HTTP responses from remote servers.

Just send an HttpRequest instance to the Http extensions like this:

import scala.concurrent.Future
import scala.concurrent.duration._

import akka.actor.ActorSystem
import akka.util.Timeout
import akka.pattern.ask
import akka.io.IO

import spray.can.Http
import spray.http._
import HttpMethods._

implicit val system: ActorSystem = ActorSystem()
implicit val timeout: Timeout = Timeout(15.seconds)
import system.dispatcher // implicit execution context

val response: Future[HttpResponse] =
(IO(Http) ? HttpRequest(GET, Uri("http://spray.io"))).mapTo[HttpResponse]

// or, with making use of spray-httpx
import spray.httpx.RequestBuilding._

val response2: Future[HttpResponse] =
(IO(Http) ? Get("http://spray.io")).mapTo[HttpResponse]

The request you send to IO(Http) must have an absolute URI or contain a Host header. spray-can will forward it
to the host connector (see Host-level API) for the target host (and start it up if it is not yet running).

If you want to specify config settings for either the host connector or the underlying connections that differ from what
you have configured in your application.conf you can either “prime” a host connector by sending an explicit
Http.HostConnectorSetup command before issuing the first request to this host or send a tuple (Request,
Http.HostConnectorSetup) combining the request with the Http.HostConnectorSetup command. The
latter also allows the request to have a relative URI and no host header since the target host is already specified with
the connector setup command.

All other aspects of the request-level API are identical to the host-level counterpart.

Basic API Structure

Depending on the specific needs of your use case you should pick the

Connection-level API for full-control over when HTTP connections are opened/closed and how requests are sched-
uled across them.

22 Chapter 1. Documentation

spray, Release $VERSION$

Host-level API for letting spray-can manage a connection-pool for one specific host.

Request-level API for letting spray-can take over all connection management.

You can interact with spray-can on different levels at the same time and, independently of which API level you choose,
spray-can will happily handle many thousand concurrent connections to a single or many different hosts.

Chunked Requests

While the host- and request-level APIs do not currently support chunked (streaming) HTTP requests the connection-
level API does. Alternatively to a single HttpRequest the application can choose to send this sequence of individual
messages:

• One ChunkedRequestStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The connection actor will render these as one logical HTTP request with Transfer-Encoding: chunked.
The timer for checking request timeouts (if configured to non-zero) only starts running when the final
ChunkedMessageEnd message was sent out.

Chunked Responses

Chunked (streaming) responses are supported by all three API levels. If the
response-chunk-aggregation-limit connection config setting is set to zero the individual response
parts of chunked requests are dispatched to the application as they come in. In these cases a full response consists of
the following messages:

• One ChunkedResponseStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The timer for checking request timeouts (if configured to non-zero) will stop running as soon as the initial
ChunkedResponseStart message has been received, i.e. there is currently no timeout checking for and in be-
tween individual response chunks.

HTTP Headers

When a spray-can connection actor receives an HTTP response it tries to parse all its headers into their respective
spray-http model classes. No matter whether this succeeds or not, the connection actor will always pass on all received
headers to the application. Unknown headers as well as ones with invalid syntax (according to spray‘s header parser)
will be made available as RawHeader instances. For the ones exhibiting parsing errors a warning message is logged
depending on the value of the illegal-header-warnings config setting.

The following message headers are managed by the spray-can layer itself and as such are ignored if you “manually”
add them to an outgoing request:

• Content-Type

• Content-Length

• Transfer-Encoding

There are two exceptions for requests in ChunkedRequestStart messages:

1. They are allowed to contain a user-specified Content-Type header if their entity is empty.

1.2. spray-can 23

spray, Release $VERSION$

2. They must contain a user-specified Content-Length header if spray.can.client.
chunkless-streaming is enabled. This Content-Length header must fit the total length of all
requests chunks.

Additionally spray-can will render a

• Host request header if none is explicitly added.

• User-Agent default request header if none is explicitly defined. The default value can be configured with the
spray.can.client.user-agent-header configuration setting.

Note: The Content-Type header has special status in spray since its value is part of the HttpEntity model
class. Even though the header also remains in the headers list of the HttpResponse sprays higher layers (like
spray-client) only work with the ContentType value contained in the HttpEntity.

SSL Support

SSL support is enabled

• for the connection-level API by setting Http.Connect(sslEncryption = true) when connecting to
a server

• for the host-level API by setting Http.HostConnectorSetup(sslEncryption = true) when cre-
ating a host connector

• for the request-level API by using an https URL in the request

Particular SSL settings can be configured via the implicit ClientSSLEngineProvider member on the Http.
Connect and Http.HostConnectorSetup command messages. An ClientSSLEngineProvider is es-
sentially a function PipelineContext Option[SSLEngine] which determines whether encryption is to
be performed and, if so, which javax.net.ssl.SSLEngine instance is to be used. By returning None the
ClientSSLEngineProvider can decide to disable SSL support even if SSL support was requested by the means
described above.

If you’d like to apply some custom configuration to your SSLEngine instances an easy way would be to bring a
custom engine provider into scope, e.g. like this:

import spray.io.ClientSSLEngineProvider

implicit val myEngineProvider = ClientSSLEngineProvider { engine =>
engine.setEnabledCipherSuites(Array("TLS_RSA_WITH_AES_256_CBC_SHA"))
engine.setEnabledProtocols(Array("SSLv3", "TLSv1"))
engine

}

EngineProvider creation also relies on an implicitly available SSLContextProvider, which is defined like this:

trait SSLContextProvider extends (PipelineContext Option[SSLContext])

The default SSLContextProvider simply provides an implicitly available “constant” SSLContext, by de-
fault the SSLContext.getDefault is used. This means that the easiest way to have the server use a custom
SSLContext is to simply bring one into scope implicitly:

import javax.net.ssl.SSLContext

implicit val mySSLContext: SSLContext = {
val context = SSLContext.getInstance("TLS")

24 Chapter 1. Documentation

spray, Release $VERSION$

// context.init(...)
context

}

Redirection Following

Automatic redirection following for 3xx responses is supported by setting configuring the spray.can.
host-connector.max-redirects setting. This is the logic that is then applied:

• If set to zero redirection responses will not be followed, i.e. they’ll be returned to the user as is.

• If set to a value > zero redirection responses will be followed up to the given number of times.

• If the redirection chain is longer than the configured value the first redirection response that is is not followed
anymore is returned to the user as is.

By default max-redirects is set to 0.

Since this setting is at the host level, it is possible to configure a different number of max-redirects for different
hosts (see Request-level API). In this situation the max-redirects configured for the host of the initial request is
respected for the entire redirection chain. This is true even if redirection means changing to another host.

Which redirects are followed?

This table shows which http method is used to follow redirects for given request methods and response status codes.
Any request method and response status code combination not in the table will not result in redirection following and
the response will be returned as is.

Request Method Response Status Code Redirection Method Specification
GET / HEAD 301 / 302 / 303 Original request method RFC 2616
Any (except GET / HEAD) 302 / 303 GET RFC 2616
Any 307 Original request method HttpBis Draft
Any 308 Original request method 308 Draft

Common Behavior

The spray-can HTTP Server and HTTP Client APIs share a number of command and event messages that are explained
in this chapter.

Closing Connections

Server- and client-side connection actors can be sent one of three defined Http.CloseCommand messages in order
to trigger the closing of an HTTP connection. They mirror the TCP-level commands and events from Akka IO and
have the following semantics:

Http.Close A “regular” close. Potentially pending unsent data are flushed to the connection before a TCP FIN is
sent. The peers FIN ACK is not awaited. If the close is successful the sender will be notified with an Http.
Closed event message.

Http.ConfirmedClose The closing of the connection is intially started by flushing pending writes and sending
a TCP FIN to the peer. Data will continue to be received until the peer closes the connection too with its own
FIN. If the close is successful the sender will be notified with an Http.ConfirmedClosed event message.

1.2. spray-can 25

http://tools.ietf.org/html/rfc2616#section-10.3
http://tools.ietf.org/html/rfc2616#section-10.3
https://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-25#section-6.4.7
http://tools.ietf.org/html/draft-reschke-http-status-308-07#section-3
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-tcp.html#Closing_connections

spray, Release $VERSION$

Http.Abort Immediately terminates the connection by sending a RST message to the peer. Pending writes are not
flushed. If the close is successful the sender will be notified with an Http.Aborted event message.

In addition to the confirmation events mentioned above the connection actor will dispatch two other events derived
from the Http.ConnectionClosed trait in certain cases:

Http.PeerClosed Dispatched when the remote peer has closed the connection without “our” side having initiated
the close first.

Http.ErrorClosed Dispatched whenever an error occurred that forced the connection to be closed.

ACKed Sends

If required the server- and client-side connection actors can confirm the successful delivery of an HTTP message
(part) to the OS network layer by replying with a “send ACK” message. The application can request a send ACK by
modifying a message part with the withAck method. For example, the following handler logic receives the String
“ok” as an actor message after the response has been successfully written to the connections socket:

def receive = {
case HttpRequest(GET, Uri.Path("/ping"), _, _, _) =>
sender() ! HttpResponse(entity = "PONG").withAck("ok")

case "ok" => println("Response was sent successfully")
}

Such ACK messages are especially helpful for triggering the sending of the next message part in a request- or response
streaming scenario since with such a design the application will never produce more data than the network can handle.

Send ACKs are always dispatched to the actor which sent the respective message (part). They are only supported
on the server-side as well as on the client-side connection-level API (i.e. not currently on the client-side host- and
request-level APIs).

Examples

The /examples/spray-can/ directory of the spray repository contains a number of example projects for spray-can, which
are described here.

simple-http-client

This example demonstrates how you can use the three different client-side API levels for performing a simple re-
quest/response cycle.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-http-client" run

26 Chapter 1. Documentation

https://github.com/spray/spray/tree/release/1.2/examples/spray-can

spray, Release $VERSION$

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-http-client and run sequentially “inside” of SBT.)

simple-http-server

This examples implements a very simple web-site built with the spray-can HTTP Server. It shows off various features
like streaming, stats support and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-http-server" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-http-server and run sequentially “inside” of SBT.)

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

curl -v 127.0.0.1:8080/stop

server-benchmark

This example implements a very simple “ping/pong” server for benchmarking purposes, that mirrors the “JSON seri-
alization” test setup from the techempower benchmark.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project server-benchmark" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project server-benchmark and run sequentially “inside” of SBT.)

4. Use a load-generation tool like ab, weighttp, wrk or the like to fire test requests, e.g.:

1.2. spray-can 27

http://127.0.0.1:8080/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://redmine.lighttpd.net/projects/weighttp/wiki
https://github.com/wg/wrk

spray, Release $VERSION$

wrk -t4 -c100 -d10 http://127.0.0.1:8080/ping

If you start the server with re-start rather than run it will run in a forked JVM that has -verbose:gc and
-XX:+PrintCompilation flags set, so you can see how often GC is performed and whether the JIT compiler is
“done” with compiling all the hot spots.

spray-client

spray-client provides high-level HTTP client functionality by adding another logic layer on top of the relatively basic
spray-can HTTP Client APIs. It doesn’t yet provide all the features that we’d like to include eventually, but it should
already be of some utility for many applications.

Currently it allows you to wrap any one of the three spray-can client-side API levels with a pipelining logic, which
provides for:

• Convenient request building

• Authentication

• Compression / Decompression

• Marshalling / Unmarshalling from and to your custom types

Currently, HTTP streaming (i.e. chunked transfer encoding) is not yet supported on the spray-client level (even though
the underlying spray-can HTTP Client APIs do support it (the host- and request-level APIs only for responses)),
i.e. you cannot send chunked requests and the response-chunk-aggregation-limit config setting for the
underlying transport must be non-zero).

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-client depends on

• spray-can

• spray-http

• spray-httpx

• spray-util

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

Installation

The Maven Repository chapter contains all the info about how to pull spray-client into your classpath.

Usage

The simplest of all use cases is this:

import spray.http._
import spray.client.pipelining._

implicit val system = ActorSystem()
import system.dispatcher // execution context for futures

28 Chapter 1. Documentation

spray, Release $VERSION$

val pipeline: HttpRequest => Future[HttpResponse] = sendReceive

val response: Future[HttpResponse] = pipeline(Get("http://spray.io/"))

The central element of a spray-client pipeline is sendReceive, which produces a function HttpRequest =>
Future[HttpResponse] (this function type is also aliased to SendReceive). When called without parameters
sendReceive will automatically use the IO(Http) extension of an implicitly available ActorSystem to access
the spray-can Request-level API. All requests must therefore either carry an absolute URI or an explicit Host header.

In order to wrap pipelining around spray-can‘s Host-level API you need to tell sendReceive which host connector
to use:

import akka.io.IO
import akka.pattern.ask
import spray.can.Http
import spray.http._
import spray.client.pipelining._

implicit val system = ActorSystem()
import system.dispatcher // execution context for futures

val pipeline: Future[SendReceive] =
for (
Http.HostConnectorInfo(connector, _) <-
IO(Http) ? Http.HostConnectorSetup("www.spray.io", port = 80)

) yield sendReceive(connector)

val request = Get("/")
val response: Future[HttpResponse] = pipeline.flatMap(_(request))

You can then fire requests with relative URIs and without Host header into the pipeline.

A pipeline of type HttpRequest => Future[HttpResponse] is nice start but leaves the creation of requests
and interpretation of responses completely to you. Many times you actually want to send and/or receive custom
objects that need to be serialized to HTTP requests or deserialized from HTTP responses. Check out this snippet for
an example of what spray-client pipelining can do for you in that regard:

import spray.http._
import spray.json.DefaultJsonProtocol
import spray.httpx.encoding.{Gzip, Deflate}
import spray.httpx.SprayJsonSupport._
import spray.client.pipelining._

case class Order(id: Int)
case class OrderConfirmation(id: Int)

object MyJsonProtocol extends DefaultJsonProtocol {
implicit val orderFormat = jsonFormat1(Order)
implicit val orderConfirmationFormat = jsonFormat1(OrderConfirmation)

}
import MyJsonProtocol._

implicit val system = ActorSystem()
import system.dispatcher // execution context for futures

val pipeline: HttpRequest => Future[OrderConfirmation] = (
addHeader("X-My-Special-Header", "fancy-value")

1.3. spray-client 29

spray, Release $VERSION$

~> addCredentials(BasicHttpCredentials("bob", "secret"))
~> encode(Gzip)
~> sendReceive
~> decode(Deflate)
~> unmarshal[OrderConfirmation]

)
val response: Future[OrderConfirmation] =

pipeline(Post("http://example.com/orders", Order(42)))

This defines a more complex pipeline that takes an HttpRequest, adds headers and compresses its entity before
dispatching it to the target server (the sendReceive element of the pipeline). The response coming back is then
decompressed and its entity unmarshalled.

When you import spray.client.pipelining._ you not only get easy access to sendReceive but also
all elements of the spray-httpx Request Building and Response Transformation traits. Therefore you can easily create
requests via something like Post("/orders", Order(42)), which is not only shorter but also provides for
automatic marshalling of custom types.

Example

The /examples/spray-client/ directory of the spray repository contains an example project for spray-client.

simple-spray-client

This example shows off how to use spray-client by querying Google’s Elevation API to retrieve the elevation of Mt.
Everest.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-spray-client" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-spray-client and run sequentially “inside” of SBT.)

spray-http

The spray-http module contains a fully immutable, case-class based model of the major HTTP data structures, like
HTTP requests, responses and common headers. It also includes a parser for the latter, which is able to construct the
more structured header models from raw unstructured header name/value pairs.

30 Chapter 1. Documentation

https://github.com/spray/spray/tree/release/1.2/examples/spray-client

spray, Release $VERSION$

Dependencies

spray-http depends on akka-actor (with ‘provided’ scope, i.e. you need to pull it in yourself). It also depends on
parboiled, a lightweight PEG parsing library providing the basis for the header parser. Since parboiled is also written
and maintained by the members of the spray team it’s not an “outside” dependency that we have no control over.

Installation

The Maven Repository chapter contains all the info about how to pull spray-http into your classpath.

Afterwards just import spray.http._ to bring all relevant identifiers into scope.

Overview

Since spray-http provides the central HTTP data structures for spray you will find the following import in quite a few
places around the spray code base (and probably your own code as well):

import spray.http._

This brings in scope all of the relevant things that are defined here and that you’ll want to work with, mainly:

• HttpRequest and HttpResponse, the central message models

• ChunkedRequestStart, ChunkedResponseStart, MessageChunk and ChunkedMessageEnd
modeling the different message parts of request/response streams

• HttpHeaders, an object containing all the defined HTTP header models

• Supporting types like Uri, HttpMethods, MediaTypes, StatusCodes, etc.

A common pattern is that the model of a certain entity is represented by an immutable type (class or trait), while the
actual instances of the entity defined by the HTTP spec live in an accompanying object carrying the name of the type
plus a trailing ‘s’.

For example:

• The defined HttpMethod instances live in the HttpMethods object.

• The defined HttpCharset instances live in the HttpCharsets object.

• The defined HttpEncoding instances live in the HttpEncodings object.

• The defined HttpProtocol instances live in the HttpProtocols object.

• The defined MediaType instances live in the MediaTypes object.

• The defined StatusCode instances live in the StatusCodes object.

You get the point.

In order to develop a better understanding for how spray models HTTP you probably should take some time to browse
around the spray-http sources (ideally with an IDE that supports proper code navigation).

Content-Type Header

One thing worth highlighting is the special treatment of the HTTP Content-Type header. Since the binary content
of HTTP message entities can only be properly interpreted when the corresponding content-type is known spray-http
puts the content-type value very close to the entity data. The HttpEntity.NonEmpty type (the non-empty variant
of the HttpEntity) is essentially little more than a tuple of the ContentType and the entity’s bytes. All logic in

1.4. spray-http 31

http://parboiled.org
http://parboiled.org
https://github.com/spray/spray/tree/release/1.2/spray-http/src/main/scala/spray/http
https://github.com/spray/spray/tree/release/1.2/spray-http/src/main/scala/spray/http

spray, Release $VERSION$

spray that needs to access the content-type of an HTTP message always works with the ContentType value in the
HttpEntity. Potentially existing instances of the Content-Type header in the HttpMessage‘s header list are
ignored!

Custom Media-Types

spray-http defines the most important media types from the IANA MIME media type registry in the MediaTypes
object, which also acts as a registry that you can register your own CustomMediaType instances with:

import spray.http.MediaTypes._

val MarkdownType = register(
MediaType.custom(
mainType = "text",
subType = "x-markdown",
compressible = true,
binary = false,
fileExtensions = Seq("markdown", "mdown", "md")))

Once registered the custom type will be properly resolved, e.g. for incoming requests by spray-routing or incoming
responses by spray-client. File extension resolution (as used for example by the FileAndResourceDirectives) will work
as expected.

spray-httpx

The spray-httpx module contains all higher-level logic for working with HTTP messages, which is not specific to
either the server-side (spray-routing) or client-side (spray-client) modules on top and therefore (potentially) used by
both of them.

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-httpx depends on

• spray-http

• spray-util

• spray-io (only required until the upgrade to Akka 2.2, will go away afterwards)

• MIME pull

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• Optionally (you need to provide these if you’d like to use the respective spray-httpx feature):

– spray-json (for SprayJsonSupport)

– lift-json (for LiftJsonSupport)

– twirl-api (for TwirlSupport)

– json4s-native (for Json4sSupport)

– json4s-jackson (for Json4sJacksonSupport)

32 Chapter 1. Documentation

http://www.iana.org/assignments/media-types/index.html
https://github.com/spray/spray/blob/release/1.2/spray-http/src/main/scala/spray/http/MediaType.scala
http://mimepull.java.net/
https://github.com/spray/spray-json
https://github.com/lift/lift/tree/master/framework/lift-base/lift-json/
https://github.com/spray/twirl
https://github.com/json4s/json4s
https://github.com/json4s/json4s

spray, Release $VERSION$

Installation

The Maven Repository chapter contains all the info about how to pull spray-httpx into your classpath.

Afterwards you can use the following imports to bring all relevant identifiers into scope:

• import spray.httpx.encoding._ for everything related to (de)compression

• import spray.httpx.marshalling._ for everything related to marshalling

• import spray.httpx.unmarshalling._ for everything related to unmarshalling

• import spray.httpx.RequestBuilding for RequestBuilding

• import spray.httpx.ResponseTransformation for ResponseTransformation

• import spray.httpx.Json4sJacksonSupport for Json4sJacksonSupport

• import spray.httpx.Json4sSupport for Json4sSupport

• import spray.httpx.LiftJsonSupport for LiftJsonSupport

• import spray.httpx.SprayJsonSupport for SprayJsonSupport

• import spray.httpx.TwirlSupport for TwirlSupport

Marshalling

“Marshalling” is the process of converting a higher-level (object) structure into some kind of lower-level representa-
tion, often a “wire format”. Other popular names for it are “Serialization” or “Pickling”.

In spray “Marshalling” means the conversion of an object of type T into an HttpEntity, which forms the “entity
body” of an HTTP request or response (depending on whether used on the client or server side).

Marshalling for instances of type T is performed by a Marshaller[T], which is defined like this:

trait Marshaller[-T] {
def apply(value: T, ctx: MarshallingContext)

}

So, a Marshaller is not a plain function T => HttpEntity, as might be initially expected. Rather it uses the
given MarshallingContext to drive the marshalling process from its own side. There are three reasons why spray
Marshallers are designed in this way:

• Marshalling on the server-side must support content negotiation, which is easier to implement if the marshaller
drives the process.

• Marshallers can delay their actions and complete the marshalling process from another thread at another time
(e.g. when the result of a Future arrives), which is not something that ordinary functions can do. (We could have
the Marshaller return a Future, but this would add overhead to the majority of cases that do not require delayed
execution.)

• Marshallers can produce more than one response part, whereby the sequence of response chunks is available as
a pull-style stream or from a push-style producer. Both these approaches need to be supported.

Default Marshallers

spray-httpx comes with pre-defined Marshallers for the following types:

• BasicMarshallers

– Array[Byte]

1.5. spray-httpx 33

https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/marshalling/MarshallingContext.scala
http://en.wikipedia.org/wiki/Content_negotiation
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/marshalling/BasicMarshallers.scala

spray, Release $VERSION$

– Array[Char]

– String

– NodeSeq

– Throwable

– spray.http.FormData

– spray.http.HttpEntity

• MetaMarshallers

– Option[T]

– Either[A, B]

– Try[T]

– Future[T]

– Stream[T]

• MultipartMarshallers

– spray.http.MultipartContent

– spray.http.MultipartFormData

Implicit Resolution

Since the marshalling infrastructure uses a type class based approach Marshaller instances for a type T have to
be available implicitly. The implicits for all the default Marshallers defined by spray-httpx are provided through the
companion object of the Marshaller trait. This means that they are always available and never need to be explicitly
imported. Additionally, you can simply “override” them by bringing your own custom version into local scope.

Custom Marshallers

spray-httpx gives you a few convenience tools for constructing Marshallers for your own types. One is the
Marshaller.of helper, which is defined as such:

def of[T](marshalTo: ContentType*)
(f: (T, ContentType, MarshallingContext) => Unit): Marshaller[T]

The default StringMarshaller for example is defined with it:

// prefer UTF-8 encoding, but also render with other encodings if the client requests
→˓them
implicit val StringMarshaller = stringMarshaller(ContentTypes.`text/plain(UTF-8)`,
→˓ContentTypes.`text/plain`)

def stringMarshaller(contentType: ContentType, more: ContentType*):
→˓Marshaller[String] =
Marshaller.of[String](contentType +: more: _*) { (value, contentType, ctx)
ctx.marshalTo(HttpEntity(contentType, value))

}

As another example, here is a Marshaller definition for a custom type Person:

34 Chapter 1. Documentation

https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/marshalling/MetaMarshallers.scala
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/marshalling/MultipartMarshallers.scala
http://stackoverflow.com/questions/5408861/what-are-type-classes-in-scala-useful-for

spray, Release $VERSION$

import spray.http._
import spray.httpx.marshalling._

val `application/vnd.acme.person` =
MediaTypes.register(MediaType.custom("application/vnd.acme.person"))

case class Person(name: String, firstName: String, age: Int)

object Person {
implicit val PersonMarshaller =
Marshaller.of[Person](`application/vnd.acme.person`) { (value, contentType, ctx)

→˓=>
val Person(name, first, age) = value
val string = "Person: %s, %s, %s".format(name, first, age)
ctx.marshalTo(HttpEntity(contentType, string))

}
}

marshal(Person("Bob", "Parr", 32)) ===
Right(HttpEntity(`application/vnd.acme.person`, "Person: Bob, Parr, 32"))

As can be seen in this example you best define the Marshaller for T in the companion object of T. This way your
marshaller is always in-scope, without any import tax.

Deriving Marshallers

Sometimes you can save yourself some work by reusing existing Marshallers for your custom ones. The idea is to
“wrap” an existing Marshaller with some logic to “re-target” it to your type.

In this regard wrapping a Marshaller can mean one or both of the following two things:

• Transform the input before it reaches the wrapped Marshaller

• Transform the output of the wrapped Marshaller

You can do both, but the existing support infrastructure favors the first over the second. The Marshaller.
delegate helper allows you to turn a Marshaller[B] into a Marshaller[A] by providing a function A
=> B:

def delegate[A, B](marshalTo: ContentType*)
(f: A => B)
(implicit mb: Marshaller[B]): Marshaller[A]

This is used, for example, by the NodeSeqMarshaller, which delegates to the StringMarshaller like this:

implicit val NodeSeqMarshaller =
Marshaller.delegate[NodeSeq, String](`text/xml`, `application/xml`,
`text/html`, `application/xhtml+xml`)(_.toString)

There is also a second overload of the delegate helper that takes a function (A, ContentType) => B rather
than a function A => B. It’s helpful if your input conversion requires access to the ContentType that is marshalled
to.

If you want the second wrapping type, transformation of the output, things are a bit harder (and less efficient), since
Marshallers produce HttpEntities rather than Strings. An HttpEntity contains the serialized result, which is essen-
tially an Array[Byte] and a ContentType. So, for example, prepending a string to the output of the underlying
Marshaller would entail deserializing the bytes into a string, prepending your prefix and reserializing into a byte
array.... not pretty and quite inefficient. Nevertheless, you can do it. Just produce a custom MarshallingContext,

1.5. spray-httpx 35

http://vimeo.com/20308847

spray, Release $VERSION$

which wraps the original one with custom logic, and pass it to the inner Marshaller. However, a general solution
would also require you to think about the handling of chunked responses, errors, etc.

Because the second form of wrapping is less attractive there is no real helper infrastructure for it. We generally
do not want to encourage such type of design. (With one exception: Simply overriding the Content-Type of an-
other Marshaller can be done efficiently. This is why the MarshallingContext already comes with a
withContentTypeOverriding copy helper.)

ToResponseMarshaller

The plain Marshaller[T] is agnostic to whether it is used on the server- or on the client-side. This means that it
can be used to produce the entities (and additional headers) for responses as well as requests.

Sometimes, however, this is not enough. If you know that you need to only marshal to HttpResponse instances
(e.g. because you only use spray on the server-side) you can also write a ToResponseMarshaller[T] for your
type. This more specialized marshaller allows you to produce the complete HttpResponse instance rather than
only its entity. As such the marshaller can also set the status code of the response (which doesn’t exist on the request
side).

When looking for a way to marshal a custom type T spray (or rather the Scala compiler) first looks for a
ToResponseMarshaller[T] for the type. Only if none is found will an in-scope Marshaller[T] be used.

Unmarshalling

“Unmarshalling” is the process of converting some kind of a lower-level representation, often a “wire format”, into a
higher-level (object) structure. Other popular names for it are “Deserialization” or “Unpickling”.

In spray “Unmarshalling” means the conversion of an HttpEntity, the model class for the entity body of an HTTP
request or response (depending on whether used on the client or server side), into an object of type T.

Unmarshalling for instances of type T is performed by an Unmarshaller[T], which is defined like this:

type Unmarshaller[T] = Deserializer[HttpEntity, T]
trait Deserializer[A, B] extends (A => Deserialized[B])
type Deserialized[T] = Either[DeserializationError, T]

So, an Unmarshaller is basically a function HttpEntity => Either[DeserializationError, T].
When compared to their counterpart, Marshallers, Unmarshallers are somewhat simpler, since they are straight func-
tions and do not have to deal with chunk streams (which are currently not supported in unmarshalling) or delayed
execution.)

Default Unmarshallers

spray-httpx comes with pre-defined Unmarshallers for the following types:

• Array[Byte]

• Array[Char]

• String

• NodeSeq

• Option[T]

• spray.http.FormData

• spray.http.HttpForm

36 Chapter 1. Documentation

spray, Release $VERSION$

• spray.http.MultipartContent

• spray.http.MultipartFormData

The relevant sources are:

• Deserializer

• BasicUnmarshallers

• MetaUnmarshallers

• FormDataUnmarshallers

Implicit Resolution

Since the unmarshalling infrastructure uses a type class based approach Unmarshaller instances for a type T
have to be available implicitly. The implicits for all the default Unmarshallers defined by spray-httpx are pro-
vided through the companion object of the Deserializer trait (since Unmarshaller[T] is just an alias for
a Deserializer[HttpEntity, T]). This means that they are always available and never need to be explicitly
imported. Additionally, you can simply “override” them by bringing your own custom version into local scope.

Custom Unmarshallers

spray-httpx gives you a few convenience tools for constructing Unmarshallers for your own types. One is the
Unmarshaller.apply helper, which is defined as such:

def apply[T](unmarshalFrom: ContentTypeRange*)
(f: PartialFunction[HttpEntity, T]): Unmarshaller[T]

The default NodeSeqUnmarshaller for example is defined with it:

implicit val NodeSeqUnmarshaller =
Unmarshaller[NodeSeq](`text/xml`, `application/xml`, `text/html`, `application/

→˓xhtml+xml`) {
case HttpEntity.NonEmpty(contentType, data)

XML.withSAXParser(createSAXParser())
.load(new InputStreamReader(new ByteArrayInputStream(data.toByteArray),

→˓contentType.charset.nioCharset))
case HttpEntity.Empty NodeSeq.Empty

}

As another example, here is an Unmarshaller definition for a custom type Person:

import spray.httpx.unmarshalling._
import spray.util._
import spray.http._

val `application/vnd.acme.person` =
MediaTypes.register(MediaType.custom("application/vnd.acme.person"))

case class Person(name: String, firstName: String, age: Int)

object Person {
implicit val PersonUnmarshaller =
Unmarshaller[Person](`application/vnd.acme.person`) {
case HttpEntity.NonEmpty(contentType, data) =>

// unmarshal from the string format used in the marshaller example

1.5. spray-httpx 37

https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/unmarshalling/Deserializer.scala
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/unmarshalling/BasicUnmarshallers.scala
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/unmarshalling/MetaUnmarshallers.scala
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/unmarshalling/FormDataUnmarshallers.scala
http://stackoverflow.com/questions/5408861/what-are-type-classes-in-scala-useful-for

spray, Release $VERSION$

val Array(_, name, first, age) =
data.asString.split(":,".toCharArray).map(_.trim)

Person(name, first, age.toInt)

// if we had meaningful semantics for the HttpEntity.Empty
// we could add a case for the HttpEntity.Empty:
// case HttpEntity.Empty => ...

}
}

val body = HttpEntity(`application/vnd.acme.person`, "Person: Bob, Parr, 32")
body.as[Person] === Right(Person("Bob", "Parr", 32))

As can be seen in this example you best define the Unmarshaller for T in the companion object of T. This way
your unmarshaller is always in-scope, without any import tax.

Deriving Unmarshallers

Unmarshaller.delegate

Sometimes you can save yourself some work by reusing existing Unmarshallers for your custom ones. The idea is to
“wrap” an existing Unmarshaller with some logic to “re-target” it to your type.

In this regard “wrapping” a Unmarshaller can mean one or both of the following two things:

• Transform the input HttpEntity before it reaches the wrapped Unmarshaller

• Transform the output of the wrapped Unmarshaller

You can do both, but the existing support infrastructure favors the latter over the former. The Unmarshaller.
delegate helper allows you to turn an Unmarshaller[A] into an Unmarshaller[B] by providing a function
A => B:

def delegate[A, B](unmarshalFrom: ContentTypeRange*)
(f: A => B)
(implicit mb: Unmarshaller[A]): Unmarshaller[B]

For example, by using Unmarshaller.delegate the Unmarshaller[Person] from the example above
could be simplified to this:

implicit val SimplerPersonUnmarshaller =
Unmarshaller.delegate[String, Person](`application/vnd.acme.person`) { string =>
val Array(_, name, first, age) = string.split(":,".toCharArray).map(_.trim)
Person(name, first, age.toInt)

}

Unmarshaller.forNonEmpty

In addition to Unmarshaller.delegate there is also another “deriving Unmarshaller builder” called
Unmarshaller.forNonEmpty. It “modifies” an existing Unmarshaller to not accept empty entities.

For example, the default NodeSeqMarshaller (see above) accepts empty entities as a valid representation of
NodeSeq.Empty. It might be, however, that in your application context empty entities are not allowed. In order to
achieve this, instead of “overriding” the existing NodeSeqMarshaller with an all-custom re-implementation you
could be doing this:

38 Chapter 1. Documentation

http://vimeo.com/20308847

spray, Release $VERSION$

implicit val myNodeSeqUnmarshaller = Unmarshaller.forNonEmpty[NodeSeq]

HttpEntity(MediaTypes.`text/xml`, "<xml>yeah</xml>").as[NodeSeq] === Right(<xml>yeah</
→˓xml>)
HttpEntity.Empty.as[NodeSeq] === Left(ContentExpected)

More specific Unmarshallers

The plain Unmarshaller[T] is agnostic to whether it is used on the server- or on the client-side. This means
that it can be used to deserialize the entities from requests as well as responses. Also, the only information that an
Unmarshaller[T] has access to for its job is the message entity. Sometimes this is not enough.

FromMessageUnmarshaller

If you need access to the message headers during unmarshalling you can write an
FromMessageUnmarshaller[T] for your type. It is defined as such:

type FromMessageUnmarshaller[T] = Deserializer[HttpMessage, T]

and allows access to all members of the HttpMessage superclass of the HttpRequest and HttpResponse
types, most importantly: the message headers. Since, like the plain Unmarshaller[T], it can deserialize requests
as well as responses it can be used on the server- as well as the client-side.

An in-scope FromMessageUnmarshaller[T] takes precedence before any potentially available plain
Unmarshaller[T].

FromRequestUnmarshaller

The FromRequestUnmarshaller[T] is the most “powerful” unmarshaller that can be used on the server-side
(and only there). It is defined like this:

type FromRequestUnmarshaller[T] = Deserializer[HttpRequest, T]

and allows access to all members of the incoming HttpRequest instance.

An in-scope FromRequestUnmarshaller[T] takes precedence before any potentially available
FromMessageUnmarshaller[T] or plain Unmarshaller[T].

FromResponseUnmarshaller

The FromResponseUnmarshaller[T] is the most “powerful” unmarshaller that can be used on the client-side
(and only there). It is defined like this:

type FromResponseUnmarshaller[T] = Deserializer[HttpResponse, T]

and allows access to all members of the incoming HttpResponse instance.

An in-scope FromResponseUnmarshaller[T] takes precedence before any potentially available
FromMessageUnmarshaller[T] or plain Unmarshaller[T].

1.5. spray-httpx 39

spray, Release $VERSION$

(De)compression

The HTTP spec defines a Content-Encoding header, which signifies whether the entity body of an HTTP message
is “encoded” and, if so, by which algorithm. The only commonly used content encodings, apart from identity (i.e.
plain text), are compression algorithms.

Currently spray supports the compression and decompression of HTTP requests and responses with the gzip or
deflate encodings. The core logic for this, which is shared by the spray-client and spray-routing modules for the
client- and server-side (respectively), lives in the spray.httpx.encoding package.

The support is not enabled by default, but must be explicitly requested. For server configuration, see When to use which
decompression directive?. For client configuration, see spray.client.pipelining.decode and spray.
httpx.ResponseTransformation.

Compression of Chunk Streams

Properly combining HTTP compression with the chunked HTTP/1.1 Transfer-Encoding can be a little tricky. For
optimal results the peer sending the message (i.e. the client or the server) should use a single compression context
across all chunks, so that common patterns shared by several chunks contribute to a high compression ratio. At the
same time the decompressor at the other end must be able to properly decompress each chunk as it arrives.

In order to achieve this the compressor must properly flush its compression stream after each chunk, something that
the GZIP- and DeflaterOutputStream implementations of the Java 6 JDK unfortunately do not support correctly (see
this JDK bug, fixed only in Java 7). sprays compression implementation jumps through a few hoops to achieve the
desired behavior also under Java 6, with no cost to you as the user.

Request Building

When you work with spray you’ll occasionally want to construct HTTP requests, e.g. when talking to an HTTP server
with spray-client or when writing tests for your server-side API with spray-testkit.

For making request construction more convenient spray-httpx provides the RequestBuilding trait, that defines a simple
DSL for assembling HTTP requests in a concise and readable manner.

Take a look at these examples:

import spray.httpx.RequestBuilding._
import spray.http._
import HttpMethods._
import HttpHeaders._
import ContentTypes._

// simple GET requests
Get() === HttpRequest(method = GET)
Get("/abc") === HttpRequest(method = GET, uri = "/abc")

// as second argument you can specify an object that is
// to be marshalled using the in-scope marshaller for the type
Put("/abc", "foobar") === HttpRequest(method = PUT, uri = "/abc", entity = "foobar")

implicit val intMarshaller = Marshaller.of[Int](`application/json`) {
(value, ct, ctx) => ctx.marshalTo(HttpEntity(ct, s"{ value: $value }"))

}
Post("/int", 42) === HttpRequest(method = POST, uri = "/int",
entity = HttpEntity(`application/json`, "{ value: 42 }"))

// add one or more headers by chaining in the `addHeader` modifier

40 Chapter 1. Documentation

http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://github.com/spray/spray/tree/release/1.2/spray-httpx/src/main/scala/spray/httpx/encoding
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4813885
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/RequestBuilding.scala

spray, Release $VERSION$

Patch("/abc", "content") ~> addHeader("X-Yeah", "Naah") === HttpRequest(
method = PATCH,
uri = "/abc",
entity = "content",
headers = List(RawHeader("X-Yeah", "Naah"))

)

Response Transformation

The counterpart to Request Building is the ResponseTransformation trait, which is especially useful on the client-side
when you want to transform an incoming HTTP response in a number of loosely coupled steps into some kind of
higher-level result type (see also spray-client).

Just like with RequestBuilding the ResponseTransformation trait gives you the ~> operator, which allows
you to “append” a transformation function onto an existing function producing an HttpResponse. Thereby it
doesn’t matter whether the result is a plain response or a response wrapped in a Future.

For example, if you have a function:

import scala.concurrent.ExecutionContext.Implicits.global // for futures

val sendReceive: HttpRequest => Future[HttpResponse] = // ...

and a “response transformer”:

val removeCookieHeaders: HttpResponse => HttpResponse =
r => r.withHeaders(r.headers.filter(_.isNot("set-cookie")))

you can use the ~> operator to combine the two:

import spray.httpx.ResponseTransformation._

val pipeline: HttpRequest => Future[HttpResponse] =
sendReceive ~> removeCookieHeaders

More generally the ~> operator combines functions in the following ways:

X Y X ~> Y
A => B B => C A => C
A => Future[B] B => C A => Future[C]
A => Future[B] B => Future[C] A => Future[C]

Predefined Response Transformers

decode(decoder: Decoder): HttpResponse HttpResponse Decodes a response using the given Decoder (Gzip or
Deflate).

unmarshal[T: Unmarshaller]: HttpResponse T Unmarshalls the response to a custom type using the in-scope
Unmarshaller[T].

logResponse(...): HttpResponse HttpResponse Doesn’t actually change the response but simply logs it.

1.5. spray-httpx 41

https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/ResponseTransformation.scala

spray, Release $VERSION$

spray-json Support

The SprayJsonSupport trait provides a Marshaller and Unmarshaller for every type T that an implicit spray.
json.RootJsonReader and/or spray.json.RootJsonWriter (respectively) is available for.

Just mix in spray.httpx.SprayJsonSupport or import spray.httpx.SprayJsonSupport._.

For example:

import spray.json.DefaultJsonProtocol
import spray.httpx.unmarshalling._
import spray.httpx.marshalling._
import spray.http._
import HttpCharsets._
import MediaTypes._

case class Person(name: String, firstName: String, age: Int)

object MyJsonProtocol extends DefaultJsonProtocol {
implicit val PersonFormat = jsonFormat3(Person)

}

import MyJsonProtocol._
import spray.httpx.SprayJsonSupport._
import spray.util._

val bob = Person("Bob", "Parr", 32)
val body = HttpEntity(
contentType = ContentType(`application/json`, `UTF-8`),
string =
"""|{

| "name": "Bob",
| "firstName": "Parr",
| "age": 32
|}""".stripMarginWithNewline("\n")

)

marshal(bob) === Right(body)
body.as[Person] === Right(bob)

If you bring an implicit spray.json.JsonPrinter into scope the marshaller will use it. Otherwise it uses the
default spray.json.PrettyPrinter.

Note: Since spray-httpx only comes with an optional dependency on spray-json you still have to add it to your project
yourself. Check the spray-json documentation for information on how to do this.

lift-json Support

In analogy to the spray-json Support spray-httpx also provides the LiftJsonSupport trait, which automatically provides
implicit Marshaller and Unmarshaller instances for all types if an implicit net.liftweb.json.Formats
instance is in scope.

When mixing in LiftJsonSupport you have to implement the abstract member:

implicit def liftJsonFormats: Formats

42 Chapter 1. Documentation

https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/SprayJsonSupport.scala
https://github.com/spray/spray-json
https://github.com/spray/spray-json
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/LiftJsonSupport.scala

spray, Release $VERSION$

with your custom logic.

Note: Since spray-httpx only comes with an optional dependency on lift-json you still have to add it to your project
yourself. Check the lift-json documentation for information on how to do this.

json4s Support

In analogy to the spray-json Support spray-httpx also provides the Json4sSupport and Json4sJacksonSupport traits,
which automatically provide implicit Marshaller and Unmarshaller instances for all types if an implicit org.
json4s.Formats instance is in scope.

When mixing in either one of the two traits you have to implement the abstract member:

implicit def json4sFormats: Formats

with your custom logic. See the json4s documentation for more information on how to do this.

Note: Since spray-httpx only comes with an optional dependency on json4s-native and json4s-jackson you still have
to add either one of them to your project yourself. Check the json4s documentation for information on how to do this.

Twirl Support

Twirl complements spray with templating support.

The TwirlSupport trait provides the tiny glue layer required for being able to use twirl templates directly in spray-
routing routes and request building.

Simply mix in the TwirlSupport trait or import spray.httpx.TwirlSupport._.

Note: Since spray-httpx only comes with an optional dependency on twirl you still have to add it to your project
yourself. Check the twirl documentation for information on how to do this.

Side Note

This site, for example, makes use of twirl-templates and TwirlSupport for serving all of its pages.

spray-io

Up to release 1.0/1.1-M7 the spray-io module provided a low-level network I/O layer for directly connecting Akka
actors to asynchronous Java NIO sockets. Since then the spray and Akka teams have joined forces to build upon the
work in spray and come up with an extended and improved implementation, which lives directly in Akka as of Akka
2.2.

Over time more and more things that were previously provided by spray-io (e.g. the pipelining infrastructure and the
SSL/TLS support) have found their way, in an improved form, from the spray codebase into the Akka codebase, so
that spray’s own IO module will cease to exist in the near future.

1.6. spray-io 43

https://github.com/lift/lift/tree/master/framework/lift-base/lift-json/
https://github.com/lift/lift/tree/master/framework/lift-base/lift-json/
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/Json4sSupport.scala
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/Json4sJacksonSupport.scala
http://json4s.org/#serialization
https://github.com/json4s/json4s/tree/master/native
https://github.com/json4s/json4s/tree/master/jackson
http://www.json4s.org
https://github.com/spray/twirl
https://github.com/spray/spray/blob/release/1.2/spray-httpx/src/main/scala/spray/httpx/TwirlSupport.scala
https://github.com/spray/twirl
https://github.com/spray/twirl
https://github.com/spray/spray/tree/master/site/src/main/twirl
https://groups.google.com/d/msg/spray-user/9mVRCDdWjn0/kd4CsXowQT8J

spray, Release $VERSION$

In release 1.2 spray-io only contains a few remnants of the earlier infrastructure, which haven’t been completely
upgraded to the Akka 2.2 I/O layer yet. So, usually there should be no reason to depend on spray-io from your own
applications anymore.

All documentation for the new I/O layer can be found in the docs to Akka 2.2, namely:

• Introduction

• I/O Layer Design

• TCP Support

• UDP Support

• Pipeline Infrastructure

spray-routing

The spray-routing module provides a high-level, very flexible routing DSL for elegantly defining RESTful web ser-
vices. Normally you would use it either on top of a spray-can HTTP Server or inside of a servlet container together
with spray-servlet.

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-routing depends on

• spray-http

• spray-httpx

• spray-util

• spray-io (optionally, required for SimpleRoutingApp)

• spray-can (optionally, required for SimpleRoutingApp)

• spray-caching (optionally, required for CachingDirectives and CachedUserPassAuthenticator)

• shapeless (1.2.x)

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

Installation

The Maven Repository chapter contains all the info about how to pull spray-can into your classpath.

Configuration

Just like Akka spray-routing relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf, in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-routing module:

44 Chapter 1. Documentation

http://doc.akka.io/docs/akka/2.2.0-RC1/scala.html
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io.html
http://doc.akka.io/docs/akka/2.2.0-RC1/dev/io-layer.html#io-layer
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-tcp.html
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-udp.html
http://doc.akka.io/docs/akka/2.2.0-RC1/scala/io-codec.html
https://github.com/milessabin/shapeless
https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html

spray, Release $VERSION$

#######################################
spray-routing Reference Config File
#######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

spray.routing {

Enables/disables the returning of more detailed error messages to the
client in the error response
Should be disabled for browser-facing APIs due to the risk of XSS attacks
and (probably) enabled for internal or non-browser APIs
(Note that spray will always produce log messages containing the full error

→˓details)
verbose-error-messages = off

the minimal file size triggering file content streaming
set to zero to disable automatic file-chunking in the FileAndResourceDirectives
file-chunking-threshold-size = 128k

the size of an individual chunk when streaming file content
file-chunking-chunk-size = 128k

Enables/disables ETag and `If-Modified-Since` support for
→˓FileAndResourceDirectives
file-get-conditional = on

Enables/disables the rendering of the "rendered by" footer in directory listings
render-vanity-footer = yes

a config section holding plain-text user/password entries
for the default FromConfigUserPassAuthenticator
users {
bob = secret

}

the maximum size between two requested ranges.
Ranges with less space in between will be coalesced.
range-coalescing-threshold = 80

the maximum number of allowed ranges per request.
Requests with more ranges will be rejected due to DOS suspicion.
range-count-limit = 16

}

Getting Started

Check out the Introduction / Getting Started chapter for information about the template project you can use to quickly
bootstrap your own spray-routing application.

SimpleRoutingApp

spray-routing also comes with the SimpleRoutingApp trait, which you can use as a basis for your first spray
endeavours. It reduces the boilerplate to a minimum and allows you to focus entirely on your route structure.

1.7. spray-routing 45

spray, Release $VERSION$

Just use this minimal example application as a starting point:

import spray.routing.SimpleRoutingApp

object Main extends App with SimpleRoutingApp {
implicit val system = ActorSystem("my-system")

startServer(interface = "localhost", port = 8080) {
path("hello") {

get {
complete {
<h1>Say hello to spray</h1>

}
}

}
}

}

This very concise way of bootstrapping a spray-routing application works nicely as long as you don’t have any special
requirements with regard to the actor which is running your route structure. Once you need more control over it, e.g.
because you want to be able to use it as the receiver (or sender) of custom messages, you’ll have to fall back to creating
your service actor “manually”. The Complete Examples demonstrate how to do that.

Key Concepts

We think that understanding the concepts presented in this chapter are crucial to being able to use spray-routing
effectively:

Big Picture

The spray-can HTTP Server and the spray-servlet connector servlet both provide an actor-level interface that allows
your application to respond to incoming HTTP requests by simply replying with an HttpResponse:

import spray.http._
import HttpMethods._

class MyHttpService extends Actor {
def receive = {
case HttpRequest(GET, Uri.Path("/ping"), _, _, _) =>

sender() ! HttpResponse(entity = "PONG")
}

}

While it’d be perfectly possible to define a complete REST API service purely by pattern-matching against the in-
coming HttpRequest (maybe with the help of a few extractors in the way of Unfiltered) this approach becomes
somewhat unwieldy for larger services due to the amount of syntax “ceremony” required. Also, it doesn’t help in
keeping your service definition as DRY as you might like.

As an alternative spray-routing provides a flexible DSL for expressing your service behavior as a structure of com-
posable elements (called Directives) in a concise and readable way. At the top-level, as the result of the runRoute
wrapper, the “route structure” produces an Actor.Receive partial function that can be directly supplied to your
service actor. The service definition from above for example, written using the routing DSL, would look like this:

import spray.routing._

46 Chapter 1. Documentation

http://unfiltered.databinder.net/
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

spray, Release $VERSION$

class MyHttpService extends HttpServiceActor {
def receive = runRoute {
path("ping") {

get {
complete("PONG")

}
}

}
}

This very short example is certainly not the best for illustrating the savings in “ceremony” and improvements in
conciseness and readability that spray-routing promises. The Longer Example might do a better job in this regard.

For learning how to work with the spray-routing DSL you should first understand the concept of Routes.

The HttpService

spray-routing makes all relevant parts of the routing DSL available through the HttpService trait, which you can mix
into your service actor or route test. The HttpService trait defines only one abstract member:

def actorRefFactory: ActorRefFactory

which connects the routing DSL to your actor hierarchy. In order to have access to all HttpService members in
your service actor you can either mix in the HttpService trait and add this line to your actor class:

def actorRefFactory = context

or, alternatively, derive your service actor from HttpServiceActor class, which already defines the connecting
def actorRefFactory = context for you.

The runRoute Wrapper

Apart from all the predefined directives the HttpService provides one important thing, the runRoute wrapper.
This method connects your route structure to the enclosing actor by constructing an Actor.Receive partial function
that you can directly use as the “behavior” function of your actor:

import spray.routing._

class MyHttpService extends HttpServiceActor {
def receive = runRoute {
path("ping") {

get {
complete("PONG")

}
}

}
}

Routes

“Routes” are a central concept in spray-routing since all structures you build with the routing DSL are subtypes of
type Route. In spray-routing a route is defined like this:

1.7. spray-routing 47

https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/HttpService.scala

spray, Release $VERSION$

type Route = RequestContext => Unit

It’s a simple alias for a function taking a RequestContext as parameter.

Contrary to what you might initially expect a route does not return anything. Rather, all response processing (i.e.
everything that needs to be done after the route itself has handled a request) is performed in “continuation-style” via
the responder of the RequestContext. If you don’t know what this means, don’t worry. It’ll become clear
soon. The key point is that this design has the advantage of being completely non-blocking as well as actor-friendly
since, this way, it’s possible to simply send off a RequestContext to another actor in a “fire-and-forget” manner,
without having to worry about results handling.

Generally when a route receives a request (or rather a RequestContext for it) it can do one of three things:

• Complete the request by calling requestContext.complete(...)

• Reject the request by calling requestContext.reject(...)

• Ignore the request (i.e. neither complete nor reject it)

The first case is pretty clear, by calling complete a given response is sent to the client as reaction to the request.
In the second case “reject” means that the route does not want to handle the request. You’ll see further down in the
section about route composition what this is good for. The third case is usually an error. If a route does not do anything
with the request it will simply not be acted upon. This means that the client will not receive a response until the request
times out, at which point a 500 Internal Server Error response will be generated. Therefore your routes
should usually end up either completing or rejecting the request.

Constructing Routes

Since routes are ordinary functions RequestContext => Unit, the simplest route is:

ctx => ctx.complete("Response")

or shorter:

_.complete("Response")

or even shorter (using the complete directive):

complete("Response")

All these are different ways of defining the same thing, namely a Route that simply completes all requests with a
static response.

Even though you could write all your application logic as one monolithic function that inspects the
RequestContext and completes it depending on its properties this type of design would be hard to read, main-
tain and reuse. Therefore spray-routing allows you to construct more complex routes from simpler ones through
composition.

Composing Routes

There are three basic operations we need for building more complex routes from simpler ones:

• Route transformation, which delegates processing to another, “inner” route but in the process changes some
properties of either the incoming request, the outgoing response or both

• Route filtering, which only lets requests satisfying a given filter condition pass and rejects all others

48 Chapter 1. Documentation

spray, Release $VERSION$

• Route chaining, which tries a second route if a given first one was rejected

The last point is achieved with the simple operator ~, which is available to all routes via a “pimp”, i.e. an implicit
extension. The first two points are provided by so-called Directives, of which a large number is already predefined
by spray-routing and which you can also easily create yourself. Directives deliver most of spray-routings power and
flexibility.

The Routing Tree

Essentially, when you combine directives and custom routes via nesting and the ~ operator, you build a routing
structure that forms a tree. When a request comes in it is injected into this tree at the root and flows down through all
the branches in a depth-first manner until either some node completes it or it is fully rejected.

Consider this schematic example:

val route =
a {
b {

c {
... // route 1

} ~
d {

... // route 2
} ~
... // route 3

} ~
e {

... // route 4
}

}

Here five directives form a routing tree.

• Route 1 will only be reached if directives a, b and c all let the request pass through.

• Route 2 will run if a and b pass, c rejects and d passes.

• Route 3 will run if a and b pass, but c and d reject.

Route 3 can therefore be seen as a “catch-all” route that only kicks in, if routes chained into preceding positions reject.
This mechanism can make complex filtering logic quite easy to implement: simply put the most specific cases up front
and the most general cases in the back.

Directives

“Directives” are small building blocks of which you can construct arbitrarily complex route structures. Here is a simple
example of a route built from directives:

import spray.routing._
import Directives._

val route: Route =
path("order" / IntNumber) { id =>
get {

complete {
"Received GET request for order " + id

}

1.7. spray-routing 49

spray, Release $VERSION$

} ~
put {

complete {
"Received PUT request for order " + id

}
}

}

The general anatomy of a directive is as follows:

name(arguments) { extractions =>
... // inner Route

}

It has a name, zero or more arguments and optionally an inner Route. Additionally directives can “extract” a number of
values and make them available to their inner routes as function arguments. When seen “from the outside” a directive
with its inner Route form an expression of type Route (see the Routes chapter for more details).

What Directives do

A directive does one or more of the following:

• Transform the incoming RequestContext before passing it on to its inner Route

• Filter the RequestContext according to some logic, i.e. only pass on certain requests and reject all others

• Extract values from the RequestContext and make them available to its inner Route as “extractions”

• Complete the request

The first point deserves some more discussion. A RequestContext is the central object that is passed on through
a route structure and, potentially, in between actors. It’s immutable but light-weight and can therefore be copied
quickly. When a directive receives a RequestContext instance from the outside it can decide to pass this instance
on unchanged to its inner Route or it can create a copy of the RequestContext instance, with one or more changes,
and pass on this copy to its inner Route. Typically this is good for two things:

• Transforming the HttpRequest instance

• “Hooking in” another response transformation function into the responder chain.

The Responder Chain

For understanding the “responder chain” it is helpful to look at what happens when the complete method of a
RequestContext instance is called in the inner-most route of a route structure.

Consider the following hypothetical route structure of three nested directives around a simple route:

foo {
bar {
baz {

ctx => ctx.complete("Hello")
}

}
}

50 Chapter 1. Documentation

spray, Release $VERSION$

Assume that foo and baz “hook in” response transformation logic whereas bar leaves the responder of the
RequestContext it receives unchanged before passing it on to its inner Route. This is what happens when the
complete("Hello") is called:

1. The complete method creates an HttpResponse an sends it to responder of the RequestContext.

2. The response transformation logic supplied by the baz directive runs and sends its result to the responder of the
RequestContext the baz directive received.

3. The response transformation logic supplied by the foo directive runs and sends its result to the responder of the
RequestContext the foo directive received.

4. The responder of the original RequestContext, which is the sender ActorRef of the HttpRequest,
receives the response and sends it out to the client.

As you can see all response handling logic forms a logic chain that directives can choose to “hook into”.

Composing Directives

As you have seen from the examples presented so far the “normal” way of composing directives is nesting. Let’s take
another look at the example from above:

val route: Route =
path("order" / IntNumber) { id =>
get {

complete {
"Received GET request for order " + id

}
} ~
put {

complete {
"Received PUT request for order " + id

}
}

}

Here the get and put directives are chained together with the ~ operator to form a higher-level route that serves as
the inner Route of the path directive. To make this structure more explicit you could also write the whole thing like
this:

def innerRoute(id: Int): Route =
get {
complete {

"Received GET request for order " + id
}

} ~
put {
complete {

"Received PUT request for order " + id
}

}

val route: Route = path("order" / IntNumber) { id => innerRoute(id) }

What you can’t see from this snippet is that directives are not implemented as simple methods but rather as stand-alone
objects of type Directive. This gives you more flexibility when composing directives. For example you can also
use the | operator on directives. Here is yet another way to write the example:

1.7. spray-routing 51

spray, Release $VERSION$

val route =
path("order" / IntNumber) { id =>
(get | put) { ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}
}

If you have a larger route structure where the (get | put) snippet appears several times you could also factor it
out like this:

val getOrPut = get | put
val route =

path("order" / IntNumber) { id =>
getOrPut { ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}
}

As an alternative to nesting you can also use the & operator:

val getOrPut = get | put
val route =

(path("order" / IntNumber) & getOrPut) { id => ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}

And once again, you can factor things out if you want:

val orderGetOrPut = path("order" / IntNumber) & (get | put)
val route =
orderGetOrPut { id => ctx =>
ctx.complete("Received " + ctx.request.method + " request for order " + id)

}

This type of combining directives with the | and & operators as well as “saving” more complex directive configurations
as a val works across the board, with all directives taking inner routes.

There is one more “ugly” thing remaining in our snippet: we have to fall back to the lowest-level route definition,
directly manipulating the RequestContext, in order to get to the request method. It’d be nicer if we could somehow
“extract” the method name in a special directive, so that we can express our inner-most route with a simple complete.
As it turns out this is easy with the extract directive:

val orderGetOrPut = path("order" / IntNumber) & (get | put)
val requestMethod = extract(_.request.method)
val route =
orderGetOrPut { id =>
requestMethod { m =>

complete("Received " + m + " request for order " + id)
}

}

Or differently:

val orderGetOrPut = path("order" / IntNumber) & (get | put)
val requestMethod = extract(_.request.method)
val route =
(orderGetOrPut & requestMethod) { (id, m) =>

52 Chapter 1. Documentation

spray, Release $VERSION$

complete("Received " + m + " request for order " + id)
}

Now, pushing the “factoring out” of directive configurations to its extreme, we end up with this:

val orderGetOrPutMethod =
path("order" / IntNumber) & (get | put) & extract(_.request.method)

val route =
orderGetOrPutMethod { (id, m) =>
complete("Received " + m + " request for order " + id)

}

Note that going this far with “compressing” several directives into a single one probably doesn’t result in the most
readable and therefore maintainable routing code. It might even be that the very first of this series of examples is in
fact the most readable one.

Still, the purpose of the exercise presented here is to show you how flexible directives can be and how you can use
their power to define your web service behavior at the level of abstraction that is right for your application.

Type Safety

When you combine directives with the | and & operators spray-routing makes sure that all extractions work as expected
and logical constraints are enforced at compile-time.

For example you cannot | a directive producing an extraction with one that doesn’t:

val route = path("order" / IntNumber) | get // doesn't compile

Also the number of extractions and their types have to match up:

val route = path("order" / IntNumber) | path("order" / DoubleNumber) // doesn't
→˓compile
val route = path("order" / IntNumber) | parameter('order.as[Int]) // ok

When you combine directives producing extractions with the & operator all extractions will be properly gathered up:

val order = path("order" / IntNumber) & parameters('oem, 'expired ?)
val route =
order { (orderId, oem, expired) =>
...

}

Directives offer a great way of constructing your web service logic from small building blocks in a plug and play
fashion while maintaining DRYness and full type-safety. If the large range of Predefined Directives (alphabetically)
does not fully satisfy your needs you can also very easily create Custom Directives.

Rejections

In the chapter about constructing Routes the ~ operator was introduced, which connects two routes in a way that allows
a second route to get a go at a request if the first route “rejected” it. The concept of “rejections” is used by spray-
routing for maintaining a more functional overall architecture and in order to be able to properly handle all kinds of
error scenarios.

When a filtering directive, like the get directive, cannot let the request pass through to its inner Route because the filter
condition is not satisfied (e.g. because the incoming request is not a GET request) the directive doesn’t immediately

1.7. spray-routing 53

spray, Release $VERSION$

complete the request with an error response. Doing so would make it impossible for other routes chained in after the
failing filter to get a chance to handle the request. Rather, failing filters “reject” the request in the same way as by
explicitly calling requestContext.reject(...).

After having been rejected by a route the request will continue to flow through the routing structure and possibly find
another route that can complete it. If there are more rejections all of them will be picked up and collected.

If the request cannot be completed by (a branch of) the route structure an enclosing handleRejections directive can be
used to convert a set of rejections into an HttpResponse (which, in most cases, will be an error response). The
runRoute Wrapper defined by the The HttpService trait internally wraps its argument route with the handleRejections
directive in order to “catch” and handle any rejection.

Predefined Rejections

A rejection encapsulates a specific reason why a Route was not able to handle a request. It is modeled as an object
of type Rejection. spray-routing comes with a set of predefined rejections, which are used by various predefined
directives.

Rejections are gathered up over the course of a Route evaluation and finally converted to HttpResponse replies by
the handleRejections directive if there was no way for the request to be completed.

RejectionHandler

The handleRejections directive delegates the actual job of converting a list of rejections to its argument, a Rejection-
Handler, which is defined like this:

trait RejectionHandler extends PartialFunction[List[Rejection], Route]

Since a RejectionHandler is a partial function it can choose, which rejections it would like to handle
and which not. Unhandled rejections will simply continue to flow through the route structure. The top-most
RejectionHandler applied by The runRoute Wrapper will handle all rejections that reach it.

So, if you’d like to customize the way certain rejections are handled simply bring a custom RejectionHandler
into implicit scope of The runRoute Wrapper or pass it to an explicit handleRejections directive that you have put
somewhere into your route structure.

Here is an example:

import spray.routing._
import spray.http._
import StatusCodes._
import Directives._

implicit val myRejectionHandler = RejectionHandler {
case MissingCookieRejection(cookieName) :: _ =>
complete(BadRequest, "No cookies, no service!!!")

}

class MyService extends HttpServiceActor {
def receive = runRoute {
`<my-route-definition>`

}
}

54 Chapter 1. Documentation

https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/Rejection.scala
https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/RejectionHandler.scala
https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/RejectionHandler.scala

spray, Release $VERSION$

Rejection Cancellation

As you can see from its definition above the RejectionHandler handles not single rejections but a whole list of
them. This is because some route structure produce several “reasons” why a request could not be handled.

Take this route structure for example:

import spray.httpx.encoding._

val route =
path("order") {
get {

complete("Received GET")
} ~
post {

decodeRequest(Gzip) {
complete("Received POST")

}
}

}

For uncompressed POST requests this route structure could yield two rejections:

• a MethodRejection produced by the get directive (which rejected because the request is not a GET request)

• an UnsupportedRequestEncodingRejection produced by the decodeRequest directive (which only
accepts gzip-compressed requests)

In reality the route even generates one more rejection, a TransformationRejection produced by the post
directive. It “cancels” all other potentially existing MethodRejections, since they are invalid after the post direc-
tive allowed the request to pass (after all, the route structure can deal with POST requests). These types of rejec-
tion cancellations are resolved before a RejectionHandler sees the rejection list. So, for the example above
the RejectionHandler will be presented with only a single-element rejection list, containing nothing but the
UnsupportedRequestEncodingRejection.

Empty Rejections

Since rejections are passed around in lists you might ask yourself what the semantics of an empty rejection list are.
In fact, empty rejection lists have well defined semantics. They signal that a request was not handled because the
respective resource could not be found. spray-routing reserves the special status of “empty rejection” to this most
common failure a service is likely to produce.

So, for example, if the path directive rejects a request, it does so with an empty rejection list. The host directive
behaves in the same way.

Exception Handling

Exceptions thrown during route execution bubble up through the route structure to the next enclosing handleExceptions
directive, The runRoute Wrapper or the onFailure callback of a future created by detach.

Similarly to the way that Rejections are handled the handleExceptions directive delegates the actual job of converting
a list of rejections to its argument, an ExceptionHandler, which is defined like this:

trait ExceptionHandler extends PartialFunction[Throwable, Route]

1.7. spray-routing 55

https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/ExceptionHandler.scala

spray, Release $VERSION$

The runRoute Wrapper defined in The HttpService does the same but gets its ExceptionHandler instance implic-
itly.

Since an ExceptionHandler is a partial function it can choose, which exceptions it would like to handle
and which not. Unhandled exceptions will simply continue to bubble up in the route structure. The top-most
ExceptionHandler applied by The runRoute Wrapper will handle all exceptions that reach it.

So, if you’d like to customize the way certain exceptions are handled simply bring a custom ExceptionHandler
into implicit scope of The runRoute Wrapper or pass it to an explicit handleExceptions directive that you have put
somewhere into your route structure.

Here is an example:

import spray.util.LoggingContext
import spray.http.StatusCodes._
import spray.routing._

implicit def myExceptionHandler(implicit log: LoggingContext) =
ExceptionHandler {
case e: ArithmeticException =>

requestUri { uri =>
log.warning("Request to {} could not be handled normally", uri)
complete(InternalServerError, "Bad numbers, bad result!!!")

}
}

class MyService extends HttpServiceActor {
def receive = runRoute {
`<my-route-definition>`

}
}

Timeout Handling

spray-routing itself does not perform any timeout checking, it relies on the underlying spray-can or spray-servlet mod-
ule to watch for request timeouts. Both, the spray-can HTTP Server and spray-servlet, define a timeout-handler
config setting, which allows you to specify the path of the actor to send spray.http.Timedout messages to
whenever a request timeout occurs. By default all Timedout messages go to same actor that also handles “regular”
request, i.e. your service actor.

Timedout is a simple wrapper around HttpRequest or ChunkedRequestStart instances:

case class Timedout(request: HttpRequestPart with HttpMessageStart)

If a Timedout messages hits your service actor runRoute unpacks it and feeds the wrapped request, i.e. the one that
timed out, to the timeoutRoute defined by the the HttpService. The default implementation looks like this:

def timeoutRoute: Route = complete(
InternalServerError,
"The server was not able to produce a timely response to your request.")

If you’d like to customize how your service reacts to request timeouts simply override the timeoutRoute method.

Alternatively you can also “catch” Timedout message before they are handled by runRoute and handle them in any
way you want. Here is an example of what this might look like:

import spray.http._
import spray.routing._

56 Chapter 1. Documentation

spray, Release $VERSION$

class MyService extends HttpServiceActor {
def receive = handleTimeouts orElse runRoute(myRoute)

def myRoute: Route = `<my-route-definition>`

def handleTimeouts: Receive = {
case Timedout(x: HttpRequest) =>
sender() ! HttpResponse(StatusCodes.InternalServerError, "Too late")

}
}

Advanced Topics

Event though the following topics are considered “advanced” usage of spray-routing they are not necessarily hard to
understand. We simply assume that many users will be able to use spray-routing effectively without having to fully
understand the topics in this chapter.

Understanding the DSL Structure

spray-routing’s rather compact route building DSL with its extensive use of function literals can initially appear tricky,
especially for users without a lot of Scala experience, so in this chapter we are explaining the mechanics in some more
detail.

Assume you have the following route:

val route: Route = complete("yeah")

This is equivalent to:

val route: Route = _.complete("yeah")

which is itself the same as:

val route: Route = { ctx => ctx.complete("yeah") }

which is a function literal. The function defined by the literal is created at the time the val statement is reached but
the code inside of the function is not executed until an actual request is injected into the route structure. This is all
probably quite clear.

Now let’s look at this slightly more complex structure:

val route: Route =
get {
complete("yeah")

}

This is equivalent to:

val route: Route = {
val inner = { ctx => ctx.complete("yeah") }
get.apply(inner)

}

1.7. spray-routing 57

spray, Release $VERSION$

All that the complete directive is doing is creating a function instance, which is then passed to the apply method of the
object named “get directive”, which wraps its argument route (the inner route of the get directive) with some filter
logic and produces the final route.

Now let’s look at this code:

val route: Route = get {
println("MARK")
complete("yeah")

}

This is equivalent to:

val route: Route = {
val inner = {
println("MARK")
{ ctx => ctx.complete("yeah") }

}
get.apply(inner)

}

As you can see from this different representation of the same code the println statement is executed when the route
val is created, not when a request comes in and the route is executed! In order to execute the println at request
processing time it must be inside of the leaf-level complete directive:

val route: Route = get {
complete {
println("MARK")
"yeah"

}
}

The mistake of putting custom logic inside of the route structure, but outside of a leaf-level route, and expecting it to
be executed at request-handling time, is probably the most frequent error seen by new spray users.

Understanding Extractions

In the examples above there are essentially two “areas” of code that are executed at different times:

• code that runs at route construction time, so usually only once

• code that runs at request-handling time, so for every request anew

If a route structure contains extractions there is one more “area” coming into play. Let’s take a look at this example:

val route: Route = {
println("MARK 1")
get {
println("MARK 2")
path("abc" / Segment) { x =>
println("MARK 3") //
complete { // code "inside"

println("MARK 4") // of the
"yeah" // extraction

} //
}

}
}

58 Chapter 1. Documentation

spray, Release $VERSION$

Here we have put logging statements at four different places in our route structure. Let’s see when exactly they will
be executed.

MARK 1 and MARK 2 From the analysis in the section above you should be able to see that there is no real differ-
ence between the “MARK 1” and “MARK 2” statements. They are both executed exactly once, when the route
is built.

MARK 3 This statement lies within a function literal of an extraction, but outside of the leaf-level route. It is executed
when the request is handled, so essentially shortly before the “MARK 4” statement.

MARK 4 This statement lives inside of the leaf-level route. As such it is executed anew for every request hitting its
route.

Why is the “MARK 3” statement executed for every request, even though it doesn’t live at the leaf level? Because it
lives “underneath an extraction”. All branches of the route structure that lie inside of a function literal for an extraction
can only be created when the extracted values have been determined. Since the value of the Segment in the example
above can only be known after a request has come in and its path has been parsed the branch of the route structure
“inside” of the extraction can only be built at request-handling time.

So essentially the sequence of events in the example above is as follows:

1. When the val route = ... declaration is executed the outer route structure is built. The “outer route
structure” consists of the get directive and its direct children, in this case only the path directive.

2. When a GET request with a matching URI comes in it flows through the outer route structure up until the point
the path directive has extracted the value of the Segment placeholder.

3. The extraction function literal is executed, with the extracted Segment value as argument. This function creates
the underlying route structure inside of the extraction.

4. After the inner route structure has been created the request is injected into it. So the inner route structure
underneath an extraction is being “executed” right after its creation.

Since the route structure inside of an extraction is fully dynamic it might look completely different depending on the
value that has been extracted. In order to keep your route structure readable (and thus maintainable) you probably
shouldn’t go too crazy with regard to dynamically creating complex route structures depending on specific extraction
values though. However, understanding why it’d be possible is helpful in getting the most out of the spray-routing
DSL.

Performance Tuning

With the understanding of the above sections it should now be possible to discover optimization potential in your route
structures for the (rare!) cases, where route execution performance really turns out to be a significant factor in your
application.

Let’s compare two route structures that are almost equivalent with regard to how they respond to requests:

val routeA =
path("abc" / Segment) { x =>
get {

complete(responseFor(x))
}

}

val routeB =
get {
path("abc" / Segment) { x =>

complete(responseFor(x))
}

}

1.7. spray-routing 59

spray, Release $VERSION$

The only difference between routeA and routeB is the order in which the get and the path directive are nested.
routeB will be a tiny amount faster in responding to requests, because the dynamic part of the route structure, i.e.
the one that is rebuilt anew for every request, is smaller.

A general recommendation could therefore be to “pull up” directives without extractions as far as possible and only
start extracting values at the lower levels of your routing tree. However, in the grand majority of applications we’d
expect the benefits of a cleanly and logically laid out structure to far outweigh potential performance improvements
through a more complex solution that goes out of its way to push down or even avoid extractions for a tiny, non-
perceivable bump in performance.

Case Class Extraction

The value extraction performed by Directives is a nice way of providing your route logic with interesting request
properties, all with proper type-safety and error handling. However, in some case you might want even more. Consider
this example:

case class Color(red: Int, green: Int, blue: Int)

val route =
path("color") {
parameters('red.as[Int], 'green.as[Int], 'blue.as[Int]) { (red, green, blue) =>

val color = Color(red, green, blue)
doSomethingWith(color) // route working with the Color instance

}
}

Here a parameters directives is employed to extract three Int values, which are then used to construct an instance of
the Color case class. So far so good. However, if the model classes we’d like to work with have more than just a few
parameters the overhead introduced by capturing the arguments as extractions only to feed them into the model class
constructor directly afterwards can somewhat clutter up your route definitions.

If your model classes are case classes, as in our example, spray-routing supports an even shorter and more concise
syntax. You can also write the example above like this:

case class Color(red: Int, green: Int, blue: Int)

val route =
path("color") {
parameters('red.as[Int], 'green.as[Int], 'blue.as[Int]).as(Color) { color =>

doSomethingWith(color) // route working with the Color instance
}

}

You can postfix any directive with extractions with an as(...) call. By simply passing the companion object of
your model case class to the as modifier method the underlying directive is transformed into an equivalent one, which
extracts only one value of the type of your model class. Note that there is no reflection involved and your case class
does not have to implement any special interfaces. The only requirement is that the directive you attach the as call to
produces the right number of extractions, with the right types and in the right order.

If you’d like to construct a case class instance from extractions produced by several directives you can first join the
directives with the & operator before using the as call:

case class Color(name: String, red: Int, green: Int, blue: Int)

val route =

60 Chapter 1. Documentation

spray, Release $VERSION$

(path("color" / Segment) &
parameters('r.as[Int], 'g.as[Int], 'b.as[Int])).as(Color) { color =>
doSomethingWith(color) // route working with the Color instance

}

Here the Color class has gotten another member, name, which is supplied not as a parameter but as a path element.
By joining the path and parameters directives with & you create a directive extracting 4 values, which directly
fit the member list of the Color case class. Therefore you can use the as modifier to convert the directive into one
extracting only a single Color instance.

Generally, when you have routes that work with, say, more than 3 extractions it’s a good idea to introduce a case class
for these and resort to case class extraction. Especially since it supports another nice feature: validation.

Caution: There is one quirk to look out for when using case class extraction: If you create an explicit companion
object for your case class, no matter whether you actually add any members to it or not, the syntax presented above
will not (quite) work anymore. Instead of as(Color) you will then have to say as(Color.apply). This
behavior appears as if it’s not really intended, we will try to work with the Typesafe team to fix this.

Case Class Validation

In many cases your web service needs to verify input parameters according to some logic before actually working with
them. E.g. in the example above the restriction might be that all color component values must be between 0 and 255.
You could get this done with a few validate directives but this would quickly become cumbersome and hard to read.

If you use case class extraction you can put the verification logic into the constructor of your case class, where it
should be:

case class Color(name: String, red: Int, green: Int, blue: Int) {
require(!name.isEmpty, "color name must not be empty")
require(0 <= red && red <= 255, "red color component must be between 0 and 255")
require(0 <= green && green <= 255, "green color component must be between 0 and 255

→˓")
require(0 <= blue && blue <= 255, "blue color component must be between 0 and 255")

}

If you write your validations like this spray-routings case class extraction logic will properly pick up all error messages
and generate a ValidationRejection if something goes wrong. By default, ValidationRejections are
converted into 400 Bad Request error response by the default RejectionHandler, if no subsequent route success-
fully handles the request.

Custom Directives

Part of spray-routings power comes from the ease with which it’s possible to define custom directives at differing
levels of abstraction. There are essentially three ways of creating custom directives:

1. By introducing new “labels” for configurations of existing directives

2. By transforming existing directives

3. By writing a directive “from scratch”

1.7. spray-routing 61

spray, Release $VERSION$

Configuration Labelling

The easiest way to create a custom directive is to simply assign a new name for a certain configuration of one or more
existing directives. In fact, most of spray-routings predefined directives can be considered named configurations of
more low-level directives.

The basic technique is explained in the chapter about Composing Directives, where, for example, a new directive
getOrPut is defined like this:

val getOrPut = get | put

Another example are the MethodDirectives, which are simply instances of a preconfigured method directive, such as:

val delete = method(DELETE)
val get = method(GET)
val head = method(HEAD)
val options = method(OPTIONS)
val patch = method(PATCH)
val post = method(POST)
val put = method(PUT)

The low-level directives that most often form the basis of higher-level “named configuration” directives are grouped
together in the BasicDirectives trait.

Transforming Directives

The second option for creating new directives is to transform an existing one using one of the “transformation meth-
ods”, which are defined on the Directive class, the base class of all “regular” directives.

Apart from the combinator operators (| and &) and the case-class extractor (as[T]) there are these transformations
defined on all Directive[L <: HList] instances:

• map / hmap

• flatMap / hflatMap

• require / hrequire

• recover / recoverPF

map / hmap

The hmap modifier has this signature (somewhat simplified):

def hmap[R](f: L => R): Directive[R :: HNil]

It can be used to transform the HList of extractions into another HList. The number and/or types of the extractions
can be changed arbitrarily. If R <: HList then the result is Directive[R]. Here is a somewhat contrived
example:

import shapeless._
import spray.routing._
import Directives._

val twoIntParameters: Directive[Int :: Int :: HNil] =
parameters('a.as[Int], 'b.as[Int])

62 Chapter 1. Documentation

https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/directives/MethodDirectives.scala
https://github.com/spray/spray/blob/release/1.2/spray-routing/src/main/scala/spray/routing/Directive.scala

spray, Release $VERSION$

val myDirective: Directive1[String] =
twoIntParameters.hmap {
case a :: b :: HNil => (a + b).toString

}

// test `myDirective` using the testkit DSL
Get("/?a=2&b=5") ~> myDirective(x => complete(x)) ~> check {

responseAs[String] === "7"
}

If the Directive is a single-value Directive, i.e. one that extracts exactly one value, you can also use the simple map
modifier, which doesn’t take the directives HList as parameter but rather the single value itself.

One example of a predefined directive relying on map is the optionalHeaderValue directive.

flatMap / hflatMap

With hmap or map you can transform the values a directive extracts, but you cannot change the “extracting” nature of
the directive. For example, if you have a directive extracting an Int you can use map to turn it into a directive that
extracts that Int and doubles it, but you cannot transform it into a directive, that doubles all positive Int values and
rejects all others.

In order to do the latter you need hflatMap or flatMap. The hflatMap modifier has this signature:

def hflatMap[R <: HList](f: L => Directive[R]): Directive[R]

The given function produces a new directive depending on the HList of extractions of the underlying one. As in the
case of map / hmap there is also a single-value variant called flatMap, which simplifies the operation for Directives
only extracting one single value.

Here is the (contrived) example from above, which doubles positive Int values and rejects all others:

import shapeless._
import spray.routing._
import Directives._

val intParameter: Directive1[Int] = parameter('a.as[Int])

val myDirective: Directive1[Int] =
intParameter.flatMap {
case a if a > 0 => provide(2 * a)
case _ => reject

}

// test `myDirective` using the testkit DSL
Get("/?a=21") ~> myDirective(i => complete(i.toString)) ~> check {

responseAs[String] === "42"
}
Get("/?a=-18") ~> myDirective(i => complete(i.toString)) ~> check {

handled must beFalse
}

A common pattern that relies on flatMap is to first extract a value from the RequestContext with the extract
directive and then flatMap with some kind of filtering logic. For example, this is the implementation of the method
directive:

1.7. spray-routing 63

spray, Release $VERSION$

/**
* Rejects all requests whose HTTP method does not match the given one.

*/
def method(httpMethod: HttpMethod): Directive0 =

extract(_.request.method).flatMap[HNil] {
case `httpMethod` pass
case _ reject(MethodRejection(httpMethod))

} & cancelAllRejections(ofType[MethodRejection])

The explicit type parameter [HNil] on the flatMap is needed in this case because the result of the flatMap
is directly concatenated with the cancelAllRejections directive, thereby preventing “outside-in” inference of the type
parameter value.

require / hrequire

The require modifier transforms a single-extraction directive into a directive without extractions, which filters the
requests according the a predicate function. All requests, for which the predicate is false are rejected, all others pass
unchanged.

The signature of require is this (slightly simplified):

def require[T](predicate: T => Boolean): Directive[HNil]

One example of a predefined directive relying on require is the first overload of the host directive.

You can only call require on single-extraction directives. The hrequire modifier is the more general variant,
which takes a predicate of type HList => Boolean. It can therefore also be used on directives with several
extractions.

recover / recoverPF

The recover modifier allows you “catch” rejections produced by the underlying directive and, instead of rejecting,
produce an alternative directive with the same type(s) of extractions.

The signature of recover is this:

def recover(recovery: List[Rejection] => Directive[L]): Directive[L]

In many cases the very similar recoverPF modifier might be little bit easier to use since it doesn’t require the
handling of all rejections:

def recoverPF(recovery: PartialFunction[List[Rejection], Directive[L]]): Directive[L]

One example of a predefined directive relying recoverPF is the optionalHeaderValue directive.

Directives from Scratch

The third option for creating custom directives is to do it “from scratch”, by directly subclassing the Directive
class. The Directive is defined like this (leaving away operators and modifiers):

abstract class Directive[L <: HList] {
def happly(f: L => Route): Route

}

64 Chapter 1. Documentation

spray, Release $VERSION$

It only has one abstract member that you need to implement, the happly method, which creates the Route the
directives presents to the outside from its inner Route building function (taking the extractions as parameter).

Extractions are kept as a shapeless HList. Here are a few examples:

• A Directive[HNil] extracts nothing (like the get directive). Because this type is used quite frequently
spray-routing defines a type alias for it:

type Directive0 = Directive[HNil]

• A Directive[String :: HNil] extracts one String value (like the hostName directive). The type
alias for it is:

type Directive1[T] = Directive[T :: HNil]

• A Directive[Int :: String :: HNil] extracts an Int value and a String value (like a
parameters('a.as[Int], 'b.as[String] directive).

Keeping extractions as HLists has a lot of advantages, mainly great flexibility while upholding full type safety and
“inferability”. However, the number of times where you’ll really have to fall back to defining a directive from scratch
should be very small. In fact, if you find yourself in a position where a “from scratch” directive is your only option,
we’d like to hear about it, so we can provide a higher-level “something” for other users.

Response Streaming

Apart from completing requests with simple HttpResponse instances spray-routing also supports asynchronous
response streaming. If you run spray-routing on top of the spray-can HTTP Server a response stream can be rendered
as an HTTP/1.1 chunked response or, if chunkless-streaming is enabled, as a single response, whose entity
body is sent in several parts, one by one, across the network.

When running spray-routing on top of spray-servlet the exact interpretation of the individual response chunks depends
on the servlet container implementation (see the spray-servlet docs for more info on this).

A streaming response is started by sending a ChunkedResponseStart message to the responder of the
RequestContext. Afterwards the responder is ready to receive a number of MessageChunk messages. A
streaming response is terminated with a ChunkedMessageEnd message.

In order to not flood the network with chunks that it might not be able to currently digest it’s always a good idea to not
send out another chunk before having received a “ACK” confirmation message from the underlying layer (see ACKed
Sends in the spray-can documentation).

The Complete Examples both contain sample code, which shows how to send a streaming response that is “pulled” by
the network via send confirmation messages.

Predefined Directives (alphabetically)

Directive Description
alwaysCache Wraps its inner Route with caching support using a given cache instance, ignores request Cache-Control headers
anyParam Extracts a parameter either from a form field or from query parameters (in that order), rejects if no form field of query param of the given name can be found
anyParams Same as anyParam, except for several parameters at once
authenticate Tries to authenticate the user with a given authenticator and either extract a an object representing the user context or rejects
authorize Applies a given authorization check to the request and rejects if it doesn’t pass
autoChunk Converts non-rejected responses from its inner Route to chunked responses using a given chunk size
autoChunkFileBytes Converts non-rejected responses from its inner Route to chunked responses using a given chunk size, if the response entity contains HttpData.FileBytes

Continued on next page

1.7. spray-routing 65

https://github.com/milessabin/shapeless

spray, Release $VERSION$

Table 1.1 – continued from previous page
Directive Description
cache Wraps its inner Route with caching support using a given cache instance
cachingProhibited Rejects the request if it doesn’t contain a Cache-Control header with no-cache or max-age=0
cancelAllRejections Adds a TransformationRejection to rejections from its inner Route, which cancels other rejections according to a predicate function
cancelRejection Adds a TransformationRejection cancelling all rejections equal to a given one
clientIP Extracts the IP address of the client from either the X-Forwarded-For, Remote-Address or X-Real-IP request header
complete Completes the request with a given response, several overloads
compressResponse Compresses responses coming back from its inner Route using either Gzip or Deflate unless the request explicitly sets Accept-Encoding to identity.
compressResponseIfRequested Compresses responses coming back from its inner Route using either Gzip or Deflate, but only when the request explicitly accepts one of them.
conditional Depending on the given ETag and Last-Modified values responds with 304 Not Modified if the request comes with the respective conditional headers.
cookie Extracts an HttpCookie with a given name or rejects if no such cookie is present in the request
decodeRequest Decompresses incoming requests using a given Decoder
decompressRequest Decompresses incoming requests using either Gzip, Deflate, or NoEncoding
delete Rejects all non-DELETE requests
deleteCookie Adds a Set-Cookie header expiring the given cookie to all HttpResponse replies of its inner Route
detach Executes its inner Route in a Future
dynamic Rebuilds its inner Route for every request anew
dynamicIf Conditionally rebuilds its inner Route for every request anew
encodeResponse Compresses responses coming back from its inner Route using a given Encoder
entity Unmarshalls the requests entity according to a given definition, rejects in case of problems
extract Extracts a single value from the RequestContext using a function RequestContext => T
failWith Bubbles the given error up the response chain, where it is dealt with by the closest handleExceptions directive and its ExceptionHandler
formField Extracts the value of an HTTP form field, rejects if the request doesn’t come with a field matching the definition
formFields Same as formField, except for several fields at once
get Rejects all non-GET requests
getFromBrowseableDirectories Same as getFromBrowseableDirectory, but allows for serving the “union” of several directories as one single “virtual” one
getFromBrowseableDirectory Completes GET requests with the content of a file underneath a given directory, renders directory contents as browsable listings
getFromDirectory Completes GET requests with the content of a file underneath a given directory
getFromFile Completes GET requests with the content of a given file
getFromResource Completes GET requests with the content of a given resource
getFromResourceDirectory Same as getFromDirectory except that the file is not fetched from the file system but rather from a “resource directory”
handleExceptions Converts exceptions thrown during evaluation of its inner Route into HttpResponse replies using a given ExceptionHandler
handleRejections Converts rejections produced by its inner Route into HttpResponse replies using a given RejectionHandler
handleWith Completes the request using a given function. Uses the in-scope Unmarshaller and Marshaller for converting to and from the function
head Rejects all non-HEAD requests
headerValue Extracts an HTTP header value using a given function, rejects if no value can be extracted
headerValueByName Extracts an HTTP header value by selecting a header by name
headerValueByType Extracts an HTTP header value by selecting a header by type
headerValuePF Same as headerValue, but with a PartialFunction
hextract Extracts an HList of values from the RequestContext using a function
host Rejects all requests with a hostname different from a given definition, can extract the hostname using a regex pattern
hostName Extracts the hostname part of the requests Host header value
hprovide Injects an HList of values into a directive, which provides them as extractions
jsonpWithParameter Wraps its inner Route with JSONP support
listDirectoryContents Completes GET requests with a unified listing of the contents of one or more given directories
logRequest Produces a log entry for every incoming request
logRequestResponse Produces a log entry for every response or rejection coming back from its inner route, allowing for coalescing with the corresponding request
logResponse Produces a log entry for every response or rejection coming back from its inner route
mapHttpResponse Transforms the HttpResponse coming back from its inner Route
mapHttpResponsePart More general than mapHttpResponse, transforms the HttpResponsePart coming back from its inner Route

Continued on next page

66 Chapter 1. Documentation

spray, Release $VERSION$

Table 1.1 – continued from previous page
Directive Description
mapHttpResponseEntity Transforms the entity of the HttpResponse coming back from its inner Route
mapHttpResponseHeaders Transforms the headers of the HttpResponse coming back from its inner Route
mapInnerRoute Transforms its inner Route with a Route => Route function
mapRejections Transforms all rejections coming back from its inner Route
mapRequest Transforms the incoming HttpRequest
mapRequestContext Transforms the RequestContext
mapRouteResponse Transforms all responses coming back from its inner Route with a Any => Any function
mapRouteResponsePF Same as mapRouteResponse, but with a PartialFunction
method Rejects if the request method does not match a given one
overrideMethodWithParameter Changes the HTTP method of the request to the value of the specified query string parameter
noop Does nothing, i.e. passes the RequestContext unchanged to its inner Route
onComplete “Unwraps” a Future[T] and runs its inner route after future completion with the future’s value as an extraction of type Try[T]
onFailure “Unwraps” a Future[T] and runs its inner route when the future has failed with the future’s failure exception as an extraction of type Throwable
onSuccess “Unwraps” a Future[T] and runs its inner route after future completion with the future’s value as an extraction of type T
optionalAuthenticate Tries to authenticate the user with a given authenticator and either extract a an object representing the user context, extract None, or rejects
optionalCookie Extracts an HttpCookie with a given name, if the cookie is not present in the request extracts None
optionalHeaderValue Extracts an optional HTTP header value using a given function
optionalHeaderValueByName Extracts an optional HTTP header value by selecting a header by name
optionalHeaderValueByType Extracts an optional HTTP header value by selecting a header by type
optionalHeaderValuePF Extracts an optional HTTP header value using a given partial function
options Rejects all non-OPTIONS requests
parameter Extracts the value of a request query parameter, rejects if the request doesn’t come with a parameter matching the definition
parameterMap Extracts the requests query parameters as a Map[String, String]
parameterMultiMap Extracts the requests query parameters as a Map[String, List[String]]
parameters Same as parameter, except for several parameters at once
parameterSeq Extracts the requests query parameters as a Seq[(String, String)]
pass Alias for noop
patch Rejects all non-PATCH requests
path Extracts zero+ values from the unmatchedPath of the RequestContext according to a given PathMatcher, rejects if no match
pathEnd Only passes on the request to its inner route if the request path has been matched completely, rejects otherwise
pathEndOrSingleSlash Only passes on the request to its inner route if the request path has been matched completely or only consists of exactly one remaining slash, rejects otherwise
pathPrefix Same as path, but also matches (and consumes) prefixes of the unmatched path (rather than only the complete unmatched path at once)
pathPrefixTest Like pathPrefix but without “consumption” of the matched path (prefix).
pathSingleSlash Only passes on the request to its inner route if the request path consists of exactly one remaining slash
pathSuffix Like as pathPrefix, but for suffixes rather than prefixed of the unmatched path
pathSuffixTest Like pathSuffix but without “consumption” of the matched path (suffix).
post Rejects all non-POST requests
produce Uses the in-scope marshaller to extract a function that can be used for completing the request with an instance of a custom type
provide Injects a single value into a directive, which provides it as an extraction
put Rejects all non-PUT requests
rawPathPrefix Applies a given PathMatcher directly to the unmatched path of the RequestContext, i.e. without implicitly consuming a leading slash
rawPathPrefixTest Checks whether the unmatchedPath of the RequestContext has a prefix matched by a PathMatcher
redirect Completes the request with redirection response of the given type to a given URI
reject Rejects the request with a given set of rejections
rejectEmptyResponse Converts responses with an empty entity into a rejection
requestEncodedWith Rejects the request if its encoding doesn’t match a given one
requestEntityEmpty Rejects the request if its entity is not empty
requestEntityPresent Rejects the request if its entity is empty
requestInstance Extracts the complete request

Continued on next page

1.7. spray-routing 67

spray, Release $VERSION$

Table 1.1 – continued from previous page
Directive Description
requestUri Extracts the complete request URI
respondWithHeader Adds a given response header to all HttpResponse replies from its inner Route
respondWithHeaders Same as respondWithHeader, but for several headers at once
respondWithLastModifiedHeader Adds a Last-Modified header to all HttpResponse replies from its inner Route
respondWithMediaType Overrides the media-type of all HttpResponse replies from its inner Route, rejects if the media-type is not accepted by the client
respondWithSingletonHeader Adds a given response header to all HttpResponse replies from its inner Route, if a header with the same name is not yet present
respondWithSingletonHeaders Same as respondWithSingletonHeader, but for several headers at once
respondWithStatus Overrides the response status of all HttpResponse replies coming back from its inner Route
responseEncodingAccepted Rejects the request if the client doesn’t accept a given encoding for the response
rewriteUnmatchedPath Transforms the unmatchedPath of the RequestContext using a given function
routeRouteResponse Chains a partial function into the response chain, which, for certain responses from its inner route, produces another route that is to be applied instead
scheme Rejects a request if its Uri scheme does not match a given one
schemeName Extracts the request Uri scheme
setCookie Adds a Set-Cookie header to all HttpResponse replies of its inner Route
unmatchedPath Extracts the unmatched path from the RequestContext
validate Passes or rejects the request depending on evaluation of a given conditional expression
withRangeSupport Transforms the response from its inner route into a 206 Partial Content response if the client requested only part of the resource with a Range header.

Predefined Directives (by trait)

All predefined directives are organized into traits that form one part of the overarching Directives trait, which is
defined like this:

trait Directives extends RouteConcatenation
with AnyParamDirectives
with BasicDirectives
with CacheConditionDirectives
with ChunkingDirectives
with CookieDirectives
with DebuggingDirectives
with EncodingDirectives
with ExecutionDirectives
with FileAndResourceDirectives
with FormFieldDirectives
with FutureDirectives
with HeaderDirectives
with HostDirectives
with MarshallingDirectives
with MethodDirectives
with MiscDirectives
with ParameterDirectives
with PathDirectives
with RangeDirectives
with RespondWithDirectives
with RouteDirectives
with SchemeDirectives
with SecurityDirectives

object Directives extends Directives

68 Chapter 1. Documentation

spray, Release $VERSION$

Directives filtering or extracting from the request

MethodDirectives Filter and extract based on the request method.

HeaderDirectives Filter and extract based on request headers.

PathDirectives Filter and extract from the request URI path.

HostDirectives Filter and extract based on the target host.

ParameterDirectives, FormFieldDirectives, AnyParamDirectives Filter and extract based on query parameters, form
fields, or both.

EncodingDirectives Filter and decode compressed request content.

Marshalling Directives Extract the request entity.

SchemeDirectives Filter and extract based on the request scheme.

SecurityDirectives Handle authentication data from the request.

CookieDirectives Filter and extract cookies.

BasicDirectives and MiscDirectives Directives handling request properties.

Directives creating or transforming the response

CacheConditionDirectives Support for conditional requests (304 Not Modified responses).

ChunkingDirectives Automatically break a response into chunks.

CookieDirectives Set, modify, or delete cookies.

EncodingDirectives Compress responses.

FileAndResourceDirectives Deliver responses from files and resources.

RangeDirectives Support for range requests (206 Partial Content responses).

RespondWithDirectives Change response properties.

RouteDirectives Complete or reject a request with a response.

BasicDirectives and MiscDirectives Directives handling or transforming response properties.

List of predefined directives by trait

AnyParamDirectives

anyParam

Alias for anyParams.

Signature

def anyParam(apdm: AnyParamDefMagnet): apdm.Out

1.7. spray-routing 69

spray, Release $VERSION$

Description

See anyParams.

anyParams

The anyParams directive allows to extract values both from query parameters and form fields.

Signature

def anyParams(params: <ParamDef[T_i]>*): Directive[T_0 :: ... T_i ... :: HNil]
def anyParams(params: <ParamDef[T_0]> :: ... <ParamDef[T_i]> ... :: HNil):
→˓Directive[T_0 :: ... T_i ... :: HNil]

The signature shown is simplified and written in pseudo-syntax, the real signature uses magnets.1 The type
<ParamDef> doesn’t really exist but consists of the syntactic variants as shown in the description and the exam-
ples of the parameters directive.

Description

The directives combines the functionality from parameters and formFields in one directive. To be able to unmarshal a
parameter to a value of a specific type (e.g. with as[Int]) you need to fulfill the requirements as explained both for
parameters and formFields.

There’s a singular version, anyParam.

Example

val route =
anyParams('name, 'age.as[Int])((name, age) =>
complete(s"$name is $age years old")

)

// extracts query parameters
Get("/?name=Herman&age=168") ~> route ~> check {

responseAs[String] === "Herman is 168 years old"
}

// extracts form fields
Post("/", FormData(Seq("name" -> "Herman", "age" -> "168"))) ~> route ~> check {

responseAs[String] === "Herman is 168 years old"
}

BasicDirectives

Basic directives are building blocks for building Custom Directives. As such they usually aren’t used in a route directly
but rather in the definition of new directives.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

70 Chapter 1. Documentation

spray, Release $VERSION$

Directives to provide values to inner routes

These directives allow to provide the inner routes with extractions. They can be distinguished on two axes: a) provide
a constant value or extract a value from the RequestContext b) provide a single value or an HList of values.

• extract

• hextract

• provide

• hprovide

Directives transforming the request

• mapRequestContext

• mapRequest

Directives transforming the response

These directives allow to hook into the response path and transform the complete response or the parts of a response
or the list of rejections:

• mapHttpResponse

• mapHttpResponseEntity

• mapHttpResponseHeaders

• mapHttpResponsePart

• mapRejections

Directives hooking into the responder chain

These directives allow to hook into The Responder Chain. The first two allow transforming the response message to a
new message. The latter one allows to completely replace the response message with the execution of a new route.

• mapRouteResponse

• mapRouteResponsePF

• routeRouteResponse

Directives changing the execution of the inner route

• mapInnerRoute

Directives alphabetically

extract

Calculates a value from the request context and provides the value to the inner route.

1.7. spray-routing 71

spray, Release $VERSION$

Signature

def extract[T](f: RequestContext T): Directive1[T]

Description

The extract directive is used as a building block for Custom Directives to extract data from the RequestContext
and provide it to the inner route. It is a special case for extracting one value of the more general hextract directive that
can be used to extract more than one value.

See Directives to provide values to inner routes for an overview of similar directives.

Example

val uriLength = extract(_.request.uri.toString.length)
val route =
uriLength { len =>
complete(s"The length of the request URI is $len")

}

Get("/abcdef") ~> route ~> check {
responseAs[String] === "The length of the request URI is 25"

}

hextract

Calculates an HList of values from the request context and provides them to the inner route.

Signature

def hextract[L <: HList](f: RequestContext L): Directive[L]

Description

The hextract directive is used as a building block for Custom Directives to extract data from the
RequestContext and provide it to the inner route. To extract just one value use the extract directive. To pro-
vide a constant value independent of the RequestContext use the hprovide directive instead.

See Directives to provide values to inner routes for an overview of similar directives.

Example

import shapeless.HNil
val pathAndQuery = hextract { ctx =>
val uri = ctx.request.uri
uri.path :: uri.query :: HNil

}

72 Chapter 1. Documentation

spray, Release $VERSION$

val route =
pathAndQuery { (p, query) =>
complete(s"The path is $p and the query is $query")

}

Get("/abcdef?ghi=12") ~> route ~> check {
responseAs[String] === "The path is /abcdef and the query is ghi=12"

}

hprovide

Provides an HList of values to the inner route.

Signature

def hprovide[L <: HList](values: L): Directive[L]

Description

The hprovide directive is used as a building block for Custom Directives to provide data to the inner route. To
provide just one value use the provide directive. If you want to provide values calculated from the RequestContext
use the hextract directive instead.

See Directives to provide values to inner routes for an overview of similar directives.

Example

import shapeless.HNil
def provideStringAndLength(value: String) = hprovide(value :: value.length :: HNil)
val route =
provideStringAndLength("test") { (value, len) =>
complete(s"Value is $value and its length is $len")

}
Get("/") ~> route ~> check {

responseAs[String] === "Value is test and its length is 4"
}

mapHttpResponse

Changes the response that was generated by the inner route.

Signature

def mapHttpResponse(f: HttpResponse HttpResponse): Directive0

1.7. spray-routing 73

spray, Release $VERSION$

Description

The mapHttpResponse directive is used as a building block for Custom Directives to transform a response that was
generated by the inner route. This directive transforms only complete responses. Use mapHttpResponsePart, instead,
to transform parts of chunked responses as well.

See Directives transforming the response for similar directives.

Example

def overwriteResultStatus(response: HttpResponse): HttpResponse =
response.copy(status = StatusCodes.BadGateway)

val route = mapHttpResponse(overwriteResultStatus)(complete("abc"))

Get("/abcdef?ghi=12") ~> route ~> check {
status === StatusCodes.BadGateway

}

mapHttpResponseEntity

Changes the response entity that was generated by the inner route.

Signature

def mapHttpResponseEntity(f: HttpEntity HttpEntity): Directive0

Description

The mapHttpResponseEntity directive is used as a building block for Custom Directives to transform a response
entity that was generated by the inner route.

See Directives transforming the response for similar directives.

Example

def prefixEntity(entity: HttpEntity): HttpEntity =
HttpEntity(HttpData("test") +: entity.data)

val prefixWithTest: Directive0 = mapHttpResponseEntity(prefixEntity)
val route = prefixWithTest(complete("abc"))

Get("/") ~> route ~> check {
responseAs[String] === "testabc"

}

mapHttpResponseHeaders

Changes the list of response headers that was generated by the inner route.

74 Chapter 1. Documentation

spray, Release $VERSION$

Signature

def mapHttpResponseHeaders(f: List[HttpHeader] List[HttpHeader]): Directive0

Description

The mapHttpResponseHeaders directive is used as a building block for Custom Directives to transform the list
of response headers that was generated by the inner route.

See Directives transforming the response for similar directives.

Example

// adds all request headers to the response
val echoRequestHeaders = extract(_.request.headers).flatMap(respondWithHeaders)

val removeIdHeader = mapHttpResponseHeaders(_.filterNot(_.lowercaseName == "id"))
val route =
removeIdHeader {
echoRequestHeaders {

complete("test")
}

}

Get("/") ~> RawHeader("id", "12345") ~> RawHeader("id2", "67890") ~> route ~> check {
header("id") === None
header("id2").get.value === "67890"

}

mapHttpResponsePart

Changes response parts generated by the inner route.

Signature

def mapHttpResponsePart(f: HttpResponsePart HttpResponsePart): Directive0

Description

The mapHttpResponsePart directive is used as a building block for Custom Directives to transform a response
part that was generated by the inner route. In contrast to mapHttpResponse this directive allows to transform parts of
chunked responses.

See Directives transforming the response for similar directives.

1.7. spray-routing 75

spray, Release $VERSION$

Example

val prefixChunks = mapHttpResponsePart {
case MessageChunk(data, _) => MessageChunk(HttpData("prefix"+data.asString))
case x => x

}
val route =
prefixChunks { ctx =>
val resp = ctx.responder
resp ! ChunkedResponseStart(HttpResponse())
resp ! MessageChunk(HttpData("abc"))
resp ! MessageChunk(HttpData("def"))
resp ! ChunkedMessageEnd

}

Get("/") ~> route ~> check {
chunks ===
List(MessageChunk(HttpData("prefixabc")),

MessageChunk(HttpData("prefixdef")))
}

mapInnerRoute

Changes the execution model of the inner route by wrapping it with arbitrary logic.

Signature

def mapInnerRoute(f: Route Route): Directive0

Description

The mapInnerRoute directive is used as a building block for Custom Directives to replace the inner route with any
other route. Usually, the returned route wraps the original one with custom execution logic.

Example

val completeWithInnerException =
mapInnerRoute { route => ctx =>
try {

route(ctx)
} catch {

case NonFatal(e) => ctx.complete(s"Got ${e.getClass.getSimpleName} '${e.
→˓getMessage}'")

}
}

val route =
completeWithInnerException {
complete(throw new IllegalArgumentException("BLIP! BLOP! Everything broke"))

}

76 Chapter 1. Documentation

spray, Release $VERSION$

Get("/") ~> route ~> check {
responseAs[String] === "Got IllegalArgumentException 'BLIP! BLOP! Everything broke'"

}

mapRejections

Transforms the list of rejections the inner route produced.

Signature

def mapRejections(f: List[Rejection] List[Rejection]): Directive0

Description

The mapRejections directive is used as a building block for Custom Directives to transform a list of rejections
from the inner route to a new list of rejections.

See Directives transforming the response for similar directives.

Example

// ignore any rejections and replace them by AuthorizationFailedRejection
val replaceByAuthorizationFailed = mapRejections(_ =>
→˓List(AuthorizationFailedRejection))
val route =
replaceByAuthorizationFailed {
path("abc")(complete("abc"))

}

Get("/") ~> route ~> check {
rejection === AuthorizationFailedRejection

}

mapRequest

Transforms the request before it is handled by the inner route.

Signature

def mapRequest(f: HttpRequest HttpRequest): Directive0

1.7. spray-routing 77

spray, Release $VERSION$

Description

The mapRequest directive is used as a building block for Custom Directives to transform a request before it is
handled by the inner route. Changing the request.uri parameter has no effect on path matching in the inner route
because the unmatched path is a separate field of the RequestContext value which is passed into routes. To change
the unmatched path or other fields of the RequestContext use the mapRequestContext directive.

See Directives transforming the request for an overview of similar directives.

Example

def transformToPostRequest(req: HttpRequest): HttpRequest = req.copy(method =
→˓HttpMethods.POST)
val route =

mapRequest(transformToPostRequest) {
requestInstance { req =>

complete(s"The request method was ${req.method}")
}

}

Get("/") ~> route ~> check {
responseAs[String] === "The request method was POST"

}

mapRequestContext

Transforms the RequestContext before it is passed to the inner route.

Signature

def mapRequestContext(f: RequestContext RequestContext): Directive0

Description

The mapRequestContext directive is used as a building block for Custom Directives to transform the request
context before it is passed to the inner route. To change only the request value itself the mapRequest directive can be
used instead.

See Directives transforming the request for an overview of similar directives.

Example

val probe = TestProbe()
val replaceResponder = mapRequestContext(_.copy(responder = probe.ref))

val route =
replaceResponder {
complete("abc")

}

78 Chapter 1. Documentation

spray, Release $VERSION$

Get("/abc/def/ghi") ~> route ~> check {
handled === false

}
probe.expectMsgType[HttpMessagePartWrapper].messagePart === HttpResponse(entity =
→˓HttpEntity("abc"))

mapRouteResponse

Changes the message the inner route sends to the responder.

Signature

def mapRouteResponse(f: Any Any): Directive0

Description

The mapRouteResponse directive is used as a building block for Custom Directives to transform what the inner
route sends to the responder (see The Responder Chain).

See Directives hooking into the responder chain for similar directives.

Example

val rejectAll = // not particularly useful directive
mapRouteResponse {
case _ => Rejected(List(AuthorizationFailedRejection))

}
val route =

rejectAll {
complete("abc")

}

Get("/") ~> route ~> check {
rejections.nonEmpty === true

}

mapRouteResponsePF

Changes the message the inner route sends to the responder.

Signature

def mapRouteResponsePF(f: PartialFunction[Any, Any]): Directive0

1.7. spray-routing 79

spray, Release $VERSION$

Description

The mapRouteResponsePF directive is used as a building block for Custom Directives to transform what the inner
route sends to the responder (see The Responder Chain). It’s similar to the mapRouteResponse directive but allows to
specify a partial function that doesn’t have to handle all the incoming response messages.

See Directives hooking into the responder chain for similar directives.

Example

case object MyCustomRejection extends Rejection
val rejectRejections = // not particularly useful directive
mapRouteResponsePF {
case Rejected(_) => Rejected(List(AuthorizationFailedRejection))

}
val route =

rejectRejections {
reject(MyCustomRejection)

}

Get("/") ~> route ~> check {
rejection === AuthorizationFailedRejection

}

noop

A directive that passes the request unchanged to its inner route.

Signature

def noop: Directive0

Description

The directive is usually used as a “neutral element” when combining directives generically.

Example

Get("/") ~> noop(complete("abc")) ~> check {
responseAs[String] === "abc"

}

pass

An alias for the noop directive.

80 Chapter 1. Documentation

spray, Release $VERSION$

provide

Provides a constant value to the inner route.

Signature

def provide[T](value: T): Directive1[T]

Description

The provide directive is used as a building block for Custom Directives to provide a single value to the inner route. To
provide several values use the hprovide directive.

See Directives to provide values to inner routes for an overview of similar directives.

Example

def providePrefixedString(value: String): Directive1[String] = provide("prefix:
→˓"+value)
val route =
providePrefixedString("test") { value =>
complete(value)

}
Get("/") ~> route ~> check {

responseAs[String] === "prefix:test"
}

routeRouteResponse

Replaces the message the inner route sends to the responder with the result of a new route.

Signature

def routeRouteResponse(f: PartialFunction[Any, Route]): Directive0

Description

The routeRouteResponse directive is used as a building block for Custom Directives to replace what the inner
route sends to the responder (see The Responder Chain) with the result of a completely new route.

See Directives hooking into the responder chain for similar directives.

Example

1.7. spray-routing 81

spray, Release $VERSION$

val completeWithRejectionNames =
routeRouteResponse {
case Rejected(rejs) => complete(s"Got these rejections: ${rejs.map(_.getClass.

→˓getSimpleName).mkString(", ")}")
}

val route = completeWithRejectionNames {
reject(AuthorizationFailedRejection) ~
post(complete("post"))

}
Get("/") ~> route ~> check {

responseAs[String] === "Got these rejections: AuthorizationFailedRejection$,
→˓MethodRejection"
}

CacheConditionDirectives

conditional

Wraps its inner route with support for Conditional Requests as defined by http://tools.ietf.org/html/
draft-ietf-httpbis-p4-conditional-26.

Signature

def conditional(eTag: EntityTag, lastModified: DateTime): Directive0

Description

Depending on the given eTag and lastModified values this directive immediately responds with 304 Not
Modified or 412 Precondition Failed (without calling its inner route) if the request comes with the re-
spective conditional headers. Otherwise the requests is simply passed on to its inner route.

The algorithm implemented by this directive closely follows what is defined in this section of the HTTPbis spec.

All responses (the ones produces by this directive itself as well as the ones coming back from the inner route) are
augmented with respective ETag and Last-Modified response headers.

Since this directive requires the EntityTag and lastModified time stamp for the resource as concrete arguments
it is usually used quite deep down in the route structure (i.e. close to the leaf-level), where the exact resource targeted
by the request has already been established and the respective ETag/Last-Modified values can be determined.

The FileAndResourceDirectives internally use the conditional directive for ETag and Last-Modified support (if
the spray.routing.file-get-conditional setting is enabled).

CachingDirectives

alwaysCache

Wraps its inner Route with caching support using the given spray.caching.Cache implementation and the in-
scope keyer function.

82 Chapter 1. Documentation

http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26#section-6
https://datatracker.ietf.org/wg/httpbis/

spray, Release $VERSION$

Signature

def alwaysCache(cache: Cache[CachingDirectives.RouteResponse])
(implicit keyer: CacheKeyer, factory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

Like cache but doesn’t regard a Cache-Control request header for deciding if the cache should be circumvented.

Note: Caching directives are not automatically in scope, see Usage about how to enable them.

Example

var i = 0
val route =
cache(routeCache()) {
complete {

i += 1
i.toString

}
}

Get("/") ~> route ~> check {
responseAs[String] === "1"

}
// now cached
Get("/") ~> route ~> check {

responseAs[String] === "1"
}
// caching prevented
Get("/") ~> `Cache-Control`(CacheDirectives.`no-cache`) ~> route ~> check {
responseAs[String] === "2"

}

cache

Wraps its inner Route with caching support using the given spray.caching.Cache implementation and the in-
scope keyer function.

Signature

def cache(cache: Cache[CachingDirectives.RouteResponse])
(implicit keyer: CacheKeyer, factory: ActorRefFactory): Directive0

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 83

spray, Release $VERSION$

The signature shown is simplified, the real signature uses magnets.1

The routeCache constructor for caches:

def routeCache(maxCapacity: Int = 500, initialCapacity: Int = 16, timeToLive:
→˓Duration = Duration.Inf,

timeToIdle: Duration = Duration.Inf): Cache[RouteResponse] =
LruCache(maxCapacity, initialCapacity, timeToLive, timeToIdle)

Description

The directive tries to serve the request from the given cache and only if not found runs the inner route to generate a
new response. A simple cache can be constructed using routeCache constructor.

The directive is implemented in terms of cachingProhibited and alwaysCache. This means that clients can circumvent
the cache using a Cache-Control request header. This behavior may not be adequate depending on your backend
implementation (i.e how expensive a call circumventing the cache into the backend is). If you want to force all requests
to be handled by the cache use the alwaysCache directive instead. In complexer cases, e.g. when the backend can
validate that a cached request is still acceptable according to the request Cache-Control header the predefined caching
directives may not be sufficient and a custom solution is necessary.

Note: Caching directives are not automatically in scope, see Usage about how to enable them.

Example

var i = 0
val route =
cache(routeCache()) {
complete {

i += 1
i.toString

}
}

Get("/") ~> route ~> check {
responseAs[String] === "1"

}
// now cached
Get("/") ~> route ~> check {

responseAs[String] === "1"
}
Get("/") ~> route ~> check {

responseAs[String] === "1"
}

cachingProhibited

Passes only requests that explicitly forbid caching with a Cache-Control header with either a no-cache or
max-age=0 setting.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

84 Chapter 1. Documentation

spray, Release $VERSION$

Signature

def cachingProhibited: Directive0

Description

This directive is used to filter out requests that forbid caching. It is used as a building block of the cache directive to
prevent caching if the client requests so.

Note: Caching directives are not automatically in scope, see Usage about how to enable them.

Example

val route =
cachingProhibited {
complete("abc")

}

Get("/") ~> route ~> check {
handled === false

}
Get("/") ~> `Cache-Control`(CacheDirectives.`no-cache`) ~> route ~> check {
responseAs[String] === "abc"

}

Usage

To use the caching directives you need to add a dependency to the spray-caching module. Caching directives are
not automatically in scope using the HttpService or Directives trait but must either be brought into scope by
extending from CachingDirectives or by using import CachingDirectives._.

ChunkingDirectives

autoChunk

Converts unchunked responses coming back from its inner route into chunked responses of which each chunk is
smaller or equal to the given size if the response entity is at least as large as the given threshold.

Signature

def autoChunk(maxChunkSize: Long)(implicit factory: ActorRefFactory): Directive0
def autoChunk(threshold: Long, maxChunkSize: Long)(implicit factory:
→˓ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets.1

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 85

spray, Release $VERSION$

Description

The parameter of type ChunkSizeMagnet decides for which values of HttpData the directive should apply and
how to chunk the data. Predefined instances of ChunkSizeMagnet decide this on the basis of two parameters, the
threshold size and the chunk size (if only one number is supplied it is used for both values). The threshold parameter
decides from which size on an entity should be converted into a chunked request. The chunk size parameter decides
how big each chunk should be at most.

See the autoChunkFileBytes directive for an alternative that adds another restriction to chunk a response only when it
consists only of FileBytes, i.e. it is completely backed by a file.

Auto chunking is especially effective in combination with encoding. Encoding (gzip, deflate) always encodes the
complete response part in one step. For big entities this can be a disadvantage especially when the data has to be read
from a file into JVM heap buffers. Auto chunking helps here because it produces a lazy stream of response chunks
that can be encoded one by one by an encoder so that only one chunk is loaded into the JVM heap at one time.

Example

val route =
autoChunk(5) {
path("long")(complete("This is a long text")) ~
path("short")(complete("Short"))

}

Get("/short") ~> route ~> check {
responseAs[String] === "Short"

}
Get("/long") ~> route ~> check {

val HttpResponse(_, c0, _, _) = response
val List(c1, c2, c3) = chunks
c0.data === HttpData("This ")
c1.data === HttpData("is a ")
c2.data === HttpData("long ")
c3.data === HttpData("text")

}

autoChunkFileBytes

Converts unchunked responses coming back from its inner route into chunked responses of which each chunk is
smaller or equal to the given size if the response entity is at least as large as the given threshold and contains only
HttpData.FileBytes.

Signature

def autoChunkFileBytes(maxChunkSize: Long)(implicit factory: ActorRefFactory):
→˓Directive0
def autoChunkFileBytes(threshold: Long, maxChunkSize: Long)(implicit factory:
→˓ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets.1

1 See The Magnet Pattern for an explanation of magnet-based overloading.

86 Chapter 1. Documentation

spray, Release $VERSION$

Description

See autoChunk for a more detailed description of the parameters as this directive is basically the same with the added
restriction to chunk only entities completely backed by files.

Example

val route =
autoChunkFileBytes(5) {
path("long")(complete("This is a long text"))

}

Get("/long") ~> route ~> check {
// don't chunk long request because it's not from a file
responseAs[String] === "This is a long text"

}

CookieDirectives

cookie

Extracts a cookie with a given name from a request or otherwise rejects the request with a
MissingCookieRejection if the cookie is missing.

Signature

def cookie(name: String): Directive1[HttpCookie]

Description

Use the optionalCookie directive instead if you want to support missing cookies in your inner route.

Example

val route =
cookie("userName") { nameCookie =>
complete(s"The logged in user is '${nameCookie.content}'")

}

Get("/") ~> Cookie(HttpCookie("userName", "paul")) ~> route ~> check {
responseAs[String] === "The logged in user is 'paul'"

}
// missing cookie
Get("/") ~> route ~> check {

rejection === MissingCookieRejection("userName")
}
Get("/") ~> sealRoute(route) ~> check {

1.7. spray-routing 87

spray, Release $VERSION$

responseAs[String] === "Request is missing required cookie 'userName'"
}

deleteCookie

Adds a header to the response to request the removal of the cookie with the given name on the client.

Signature

def deleteCookie(first: HttpCookie, more: HttpCookie*): Directive0
def deleteCookie(name: String, domain: String = "", path: String = ""): Directive0

Description

Use the setCookie directive to update a cookie.

Example

val route =
deleteCookie("userName") {
complete("The user was logged out")

}

Get("/") ~> route ~> check {
responseAs[String] === "The user was logged out"
header[`Set-Cookie`] === Some(`Set-Cookie`(HttpCookie("userName", content = "deleted

→˓", expires = Some(DateTime.MinValue))))
}

optionalCookie

Extracts an optional cookie with a given name from a request.

Signature

def optionalCookie(name: String): Directive1[Option[HttpCookie]]

Description

Use the cookie directive instead if the inner route does not handle a missing cookie.

88 Chapter 1. Documentation

spray, Release $VERSION$

Example

val route =
optionalCookie("userName") {
case Some(nameCookie) => complete(s"The logged in user is '${nameCookie.content}'

→˓")
case None => complete("No user logged in")

}

Get("/") ~> Cookie(HttpCookie("userName", "paul")) ~> route ~> check {
responseAs[String] === "The logged in user is 'paul'"

}
Get("/") ~> route ~> check {

responseAs[String] === "No user logged in"
}

setCookie

Adds a header to the response to request the update of the cookie with the given name on the client.

Signature

def setCookie(first: HttpCookie, more: HttpCookie*): Directive0

Description

Use the deleteCookie directive to delete a cookie.

Example

val route =
setCookie(HttpCookie("userName", content = "paul")) {
complete("The user was logged in")

}

Get("/") ~> route ~> check {
responseAs[String] === "The user was logged in"
header[`Set-Cookie`] === Some(`Set-Cookie`(HttpCookie("userName", content = "paul

→˓")))
}

DebuggingDirectives

logRequest

Logs the request.

1.7. spray-routing 89

spray, Release $VERSION$

Signature

def logRequest(marker: String)(implicit log: LoggingContext): Directive0
def logRequest(marker: String, level: LogLevel)(implicit log: LoggingContext):
→˓Directive0
def logRequest(show: HttpRequest => String)(implicit log: LoggingContext): Directive0
def logRequest(show: HttpRequest => LogEntry)(implicit log: LoggingContext):
→˓Directive0
def logRequest(magnet: LoggingMagnet[HttpRequest => Unit])(implicit log:
→˓LoggingContext): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

Logs the request using the supplied LoggingMagnet[HttpRequest => Unit]. This LoggingMagnet is
a wrapped function HttpRequest => Unit that can be implicitly created from the different constructors shown
above. These constructors build a LoggingMagnet from these components:

• A marker to prefix each log message with.

• A log level.

• A show function that calculates a string representation for a request.

• An implicit LoggingContext that is used to emit the log message.

• A function that creates a LogEntry which is a combination of the elements above.

It is also possible to use any other function HttpRequest => Unit for logging by wrapping it with
LoggingMagnet. See the examples for ways to use the logRequest directive.

Use logResponse for logging the response, or logRequestResponse for logging both.

Example

// different possibilities of using logRequest

// The first alternatives use an implicitly available LoggingContext for logging
// marks with "get-user", log with debug level, HttpRequest.toString
DebuggingDirectives.logRequest("get-user")

// marks with "get-user", log with info level, HttpRequest.toString
DebuggingDirectives.logRequest("get-user", Logging.InfoLevel)

// logs just the request method at debug level
def requestMethod(req: HttpRequest): String = req.method.toString
DebuggingDirectives.logRequest(requestMethod _)

// logs just the request method at info level
def requestMethodAsInfo(req: HttpRequest): LogEntry = LogEntry(req.method.toString,
→˓Logging.InfoLevel)
DebuggingDirectives.logRequest(requestMethodAsInfo _)

// This one doesn't use the implicit LoggingContext but uses `println` for logging

1 See The Magnet Pattern for an explanation of magnet-based overloading.

90 Chapter 1. Documentation

spray, Release $VERSION$

def printRequestMethod(req: HttpRequest): Unit = println(req.method)
val logRequestPrintln = DebuggingDirectives.
→˓logRequest(LoggingMagnet(printRequestMethod))

Get("/") ~> logRequestPrintln(complete("logged")) ~> check {
responseAs[String] === "logged"

}

logRequestResponse

Logs request and response.

Signature

def logRequestResponse(marker: String)(implicit log: LoggingContext): Directive0
def logRequestResponse(marker: String, level: LogLevel)(implicit log:
→˓LoggingContext): Directive0
def logRequestResponse(show: HttpRequest HttpResponsePart Option[LogEntry])

(implicit log: LoggingContext): Directive0
def logRequestResponse(show: HttpRequest Any Option[LogEntry])(implicit log:
→˓LoggingContext): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

This directive is a combination of logRequest and logResponse. See logRequest for the general description
how these directives work.

Example

// different possibilities of using logRequestResponse

// The first alternatives use an implicitly available LoggingContext for logging
// marks with "get-user", log with debug level, HttpRequest.toString, HttpResponse.
→˓toString
DebuggingDirectives.logRequestResponse("get-user")

// marks with "get-user", log with info level, HttpRequest.toString, HttpResponse.
→˓toString
DebuggingDirectives.logRequestResponse("get-user", Logging.InfoLevel)

// logs just the request method and response status at info level
def requestMethodAndResponseStatusAsInfo(req: HttpRequest): Any => Option[LogEntry] =
→˓{
case res: HttpResponse => Some(LogEntry(req.method + ":" + res.message.status,

→˓Logging.InfoLevel))
case _ => None // other kind of responses

}

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 91

spray, Release $VERSION$

DebuggingDirectives.logRequestResponse(requestMethodAndResponseStatusAsInfo _)

// This one doesn't use the implicit LoggingContext but uses `println` for logging
def printRequestMethodAndResponseStatus(req: HttpRequest)(res: Any): Unit =

println(requestMethodAndResponseStatusAsInfo(req)(res).map(_.obj.toString).
→˓getOrElse(""))
val logRequestResponsePrintln = DebuggingDirectives.
→˓logRequestResponse(LoggingMagnet(printRequestMethodAndResponseStatus))

Get("/") ~> logRequestResponsePrintln(complete("logged")) ~> check {
responseAs[String] === "logged"

}

logResponse

Logs the response.

Signature

def logResponse(marker: String)(implicit log: LoggingContext): Directive0
def logResponse(marker: String, level: LogLevel)(implicit log: LoggingContext):
→˓Directive0
def logResponse(show: Any => String)(implicit log: LoggingContext): Directive0
def logResponse(show: Any => LogEntry)(implicit log: LoggingContext): Directive0
def logResponse(magnet: LoggingMagnet[Any => Unit])(implicit log: LoggingContext):
→˓Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

See logRequest for the general description how these directives work. This directive is different as it requires
a LoggingMagnet[Any => Unit]. Instead of just logging HttpResponses, logResponse is able to log
anything passing through The Responder Chain (which can either be a HttpResponsePart or a Rejected mes-
sage reporting rejections).

Use logRequest for logging the request, or logRequestResponse for logging both.

Example

// different possibilities of using logResponse

// The first alternatives use an implicitly available LoggingContext for logging
// marks with "get-user", log with debug level, HttpResponse.toString
DebuggingDirectives.logResponse("get-user")

// marks with "get-user", log with info level, HttpResponse.toString
DebuggingDirectives.logResponse("get-user", Logging.InfoLevel)

1 See The Magnet Pattern for an explanation of magnet-based overloading.

92 Chapter 1. Documentation

spray, Release $VERSION$

// logs just the response status at debug level
def responseStatus(res: Any): String = res match {
case x: HttpResponse => x.status.toString
case _ => "unknown response part"

}
DebuggingDirectives.logResponse(responseStatus _)

// logs just the response status at info level
def responseStatusAsInfo(res: Any): LogEntry = LogEntry(responseStatus(res), Logging.
→˓InfoLevel)
DebuggingDirectives.logResponse(responseStatusAsInfo _)

// This one doesn't use the implicit LoggingContext but uses `println` for logging
def printResponseStatus(res: Any): Unit = println(responseStatus(res))
val logResponsePrintln = DebuggingDirectives.
→˓logResponse(LoggingMagnet(printResponseStatus))

Get("/") ~> logResponsePrintln(complete("logged")) ~> check {
responseAs[String] === "logged"

}

EncodingDirectives

compressResponse

Uses the first of a given number of encodings that the client accepts. If none are accepted the request is rejected with
an UnacceptedResponseEncodingRejection.

Signature

def compressResponse()(implicit refFactory: ActorRefFactory): Directive0
def compressResponse(e1: Encoder)(implicit refFactory: ActorRefFactory): Directive0
def compressResponse(e1: Encoder, e2: Encoder)(implicit refFactory: ActorRefFactory):
→˓Directive0
def compressResponse(e1: Encoder, e2: Encoder, e3: Encoder)(implicit refFactory:
→˓ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

The compressResponse directive allows to specify zero to three encoders to try in the specified order. If none are
specified the tried list is Gzip, Deflate, and then NoEncoding.

The compressResponse() directive (without an explicit list of encoders given) will therefore behave as follows:

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 93

spray, Release $VERSION$

Accept-Encoding header resulting response
Accept-Encoding: gzip compressed with Gzip
Accept-Encoding: deflate compressed with Deflate
Accept-Encoding: deflate, gzip compressed with Gzip
Accept-Encoding: identity uncompressed
no Accept-Encoding header present compressed with Gzip

For an overview of the different compressResponse directives see When to use which compression directive?.

Example

This example shows the behavior of compressResponse without any encoders specified:

val route = compressResponse() { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(gzip)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

response must haveContentEncoding(deflate)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

status === StatusCodes.OK
response must haveContentEncoding(identity)
responseAs[String] === "content"

}

This example shows the behaviour of compressResponse(Gzip):

val route = compressResponse(Gzip) { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(gzip)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}

compressResponseIfRequested

Only compresses the response when specifically requested by the Accept-Encoding request header (i.e. the default
is “no compression”).

94 Chapter 1. Documentation

spray, Release $VERSION$

Signature

def compressResponseIfRequested()(implicit refFactory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

The compressResponseIfRequested directive is an alias for compressResponse(NoEncoding,
Gzip, Deflate) and will behave as follows:

Accept-Encoding header resulting response
Accept-Encoding: gzip compressed with Gzip
Accept-Encoding: deflate compressed with Deflate
Accept-Encoding: deflate, gzip compressed with Gzip
Accept-Encoding: identity uncompressed
no Accept-Encoding header present uncompressed

For an overview of the different compressResponse directives see When to use which compression directive?.

Example

val route = compressResponseIfRequested() { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(identity)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

response must haveContentEncoding(deflate)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

response must haveContentEncoding(identity)
}

decodeRequest

Tries to decode the request with the specified Decoder or rejects the request with an
UnacceptedRequestEncodingRejection(supportedEncoding).

Signature

def decodeRequest(decoder: Decoder): Directive0

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 95

spray, Release $VERSION$

Description

The decodeRequest directive is the building block for the decompressRequest directive.

decodeRequest and decompressRequest are related like this:

decompressRequest(Gzip) = decodeRequest(Gzip)
decompressRequest(a, b, c) = decodeRequest(a) | decodeRequest(b) |
→˓decodeRequest(c)
decompressRequest() = decodeRequest(Gzip) | decodeRequest(Deflate) |
→˓decodeRequest(NoEncoding)

Example

val route =
decodeRequest(Gzip) {
entity(as[String]) { content: String =>
complete(s"Request content: '$content'")

}
}

Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> route ~> check {
responseAs[String] === "Request content: 'Hello'"

}
Get("/", helloDeflated) ~> `Content-Encoding`(deflate) ~> route ~> check {

rejection === UnsupportedRequestEncodingRejection(gzip)
}
Get("/", "hello") ~> `Content-Encoding`(identity) ~> route ~> check {

rejection === UnsupportedRequestEncodingRejection(gzip)
}

decompressRequest

Decompresses the request if it is can be decoded with one of the given decoders. Otherwise, the request is rejected
with an UnsupportedRequestEncodingRejection(supportedEncoding).

Signature

def decompressRequest(): Directive0
def decompressRequest(first: Decoder, more: Decoder*): Directive0

Description

The decompressRequest directive allows either to specify a list of decoders or none at all. If no Decoder is
specified Gzip, Deflate, or NoEncoding will be tried.

The decompressRequest directive will behave as follows:

96 Chapter 1. Documentation

spray, Release $VERSION$

Content-Encoding header resulting request
Content-Encoding: gzip decompressed
Content-Encoding: deflate decompressed
Content-Encoding: identity unchanged
no Content-Encoding header present unchanged

For an overview of the different decompressRequest directives and which one to use when, see When to use
which decompression directive?.

Example

This example shows the behavior of decompressRequest() without any decoders specified:

val route =
decompressRequest() {
entity(as[String]) { content: String =>
complete(s"Request content: '$content'")

}
}

Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> route ~> check {
responseAs[String] === "Request content: 'Hello'"

}
Get("/", helloDeflated) ~> `Content-Encoding`(deflate) ~> route ~> check {

responseAs[String] === "Request content: 'Hello'"
}
Get("/", "hello uncompressed") ~> `Content-Encoding`(identity) ~> route ~> check {

responseAs[String] === "Request content: 'hello uncompressed'"
}

This example shows the behaviour of decompressRequest(Gzip, NoEncoding):

val route =
decompressRequest(Gzip, NoEncoding) {
entity(as[String]) { content: String =>
complete(s"Request content: '$content'")

}
}

Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> route ~> check {
responseAs[String] === "Request content: 'Hello'"

}
Get("/", helloDeflated) ~> `Content-Encoding`(deflate) ~> route ~> check {

rejections === List(UnsupportedRequestEncodingRejection(gzip),
→˓UnsupportedRequestEncodingRejection(identity))
}
Get("/", "hello uncompressed") ~> `Content-Encoding`(identity) ~> route ~> check {

responseAs[String] === "Request content: 'hello uncompressed'"
}

encodeResponse

Tries to encode the response with the specified Encoder or rejects the request with an
UnacceptedResponseEncodingRejection(supportedEncodings).

1.7. spray-routing 97

spray, Release $VERSION$

Signature

def encodeResponse(encoder: Encoder)(implicit refFactory: ActorRefFactory): Directive0
def encodeResponse(encoder: Encoder, threshold: Long, maxChunkSize: Long)

(implicit refFactory: ActorRefFactory): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

The directive automatically applies the autoChunkFileBytes directive as well to avoid having to load an entire
file into JVM heap.

The parameter to the directive is either just an Encoder or all of an Encoder, a threshold, and a chunk size to
configure the automatically applied autoChunkFileBytes directive.

The encodeResponse directive is the building block for the compressResponse and
compressResponseIfRequested directives.

encodeResponse, compressResponse, and compressResponseIfRequested are related like this:

compressResponse(Gzip) = encodeResponse(Gzip)
compressResponse(a, b, c) = encodeResponse(a) | encodeResponse(b) |
→˓encodeResponse(c)
compressResponse() = encodeResponse(Gzip) | encodeResponse(Deflate) |
→˓encodeResponse(NoEncoding)
compressResponseIfRequested() = encodeResponse(NoEncoding) | encodeResponse(Gzip) |
→˓encodeResponse(Deflate)

Example

val route = encodeResponse(Gzip) { complete("content") }

Get("/") ~> route ~> check {
response must haveContentEncoding(gzip)

}
Get("/") ~> `Accept-Encoding`(gzip, deflate) ~> route ~> check {

response must haveContentEncoding(gzip)
}
Get("/") ~> `Accept-Encoding`(deflate) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}
Get("/") ~> `Accept-Encoding`(identity) ~> route ~> check {

rejection === UnacceptedResponseEncodingRejection(gzip)
}

requestEncodedWith

Passes the request to the inner route if the request is encoded with the argument encoding. Otherwise, rejects the
request with an UnacceptedRequestEncodingRejection(encoding).

1 See The Magnet Pattern for an explanation of magnet-based overloading.

98 Chapter 1. Documentation

spray, Release $VERSION$

Signature

def requestEncodedWith(encoding: HttpEncoding): Directive0

Description

This directive is the building block for decodeRequest to reject unsupported encodings.

responseEncodingAccepted

Passes the request to the inner route if the request accepts the argument encoding. Otherwise, rejects the request with
an UnacceptedResponseEncodingRejection(encoding).

Signature

def responseEncodingAccepted(encoding: HttpEncoding): Directive0

Description

This directive is the building block for encodeResponse to reject unsupported encodings.

When to use which compression directive?

There are three different directives for performing response compressing with slightly different behavior:

encodeResponse Always compresses the response with the one given encoding, rejects the request with an
UnacceptedResponseEncodingRejection if the client doesn’t accept the given encoding. The other
compression directives are built upon this one. See its description for an overview how they relate exactly.

compressResponse Uses the first of a given number of encodings that the client accepts. If none are accepted the
request is rejected.

compressResponseIfRequested Only compresses the response when specifically requested by the
Accept-Encoding request header (i.e. the default is “no compression”).

See the individual directives for more detailed usage examples.

When to use which decompression directive?

There are two different directives for performing request decompressing with slightly different behavior:

decodeRequest Attempts to decompress the request using the one given decoder, rejects the request with an
UnsupportedRequestEncodingRejection if the request is not encoded with the given encoder.

decompressRequest Decompresses the request if it is encoded with one of the given encoders. If the request’s
encoding doesn’t match one of the given encoders it is rejected.

1.7. spray-routing 99

spray, Release $VERSION$

Combining compression and decompression

As with all Spray directives, the above single directives can be combined using & to produce compound directives that
will decompress requests and compress responses in whatever combination required. Some examples:

"the (decompressRequest & compressResponse) compound directive" should {
val decompressCompress = (decompressRequest() & compressResponse())
"decompress a GZIP compressed request and produce a GZIP compressed response if the

→˓request has no Accept-Encoding header" in {
Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> {

decompressCompress { echoRequestContent }
} ~> check {

response must haveContentEncoding(gzip)
body === HttpEntity(ContentType(`text/plain`, `UTF-8`), helloGzipped)

}
}
"decompress a GZIP compressed request and produce a Deflate compressed response if

→˓the request has an `Accept-Encoding: deflate` header" in {
Get("/", helloGzipped) ~> `Content-Encoding`(gzip) ~> `Accept-Encoding`(deflate) ~

→˓> {
decompressCompress { echoRequestContent }

} ~> check {
response must haveContentEncoding(deflate)
body === HttpEntity(ContentType(`text/plain`, `UTF-8`), helloDeflated)

}
}
"decompress an uncompressed request and produce a GZIP compressed response if the

→˓request has an `Accept-Encoding: gzip` header" in {
Get("/", "Hello") ~> `Accept-Encoding`(gzip) ~> {

decompressCompress { echoRequestContent }
} ~> check {

response must haveContentEncoding(gzip)
body === HttpEntity(ContentType(`text/plain`, `UTF-8`), helloGzipped)

}
}

}

ExecutionDirectives

detach

Executes the inner route inside a future.

Signature

def detach()(implicit ec: ExecutionContext): Directive0
def detach()(implicit refFactory: ActorRefFactory): Directive0
def detach(ec: ExecutionContext): Directive0

The signature shown is simplified, the real signature uses magnets.1

1 See The Magnet Pattern for an explanation of magnet-based overloading.

100 Chapter 1. Documentation

spray, Release $VERSION$

Description

This directive needs either an implicit ExecutionContext (detach()) or an explicit one (detach(ec)).

Caution: It is a common mistake to access actor state from code run inside a future that is created inside an
actor by accidentally accessing instance methods or variables of the actor that are available in the scope. This also
applies to the detach directive if a route is run inside an actor which is the usual case. Make sure not to access
any actor state from inside the detach block directly or indirectly.

A lesser known fact is that the current semantics of executing The Routing Tree encompasses that every route that
rejects a request also runs the alternative routes chained with ~. This means that when a route is rejected out of a
detach block, also all the alternatives tried afterwards are then run out of the future originally created for running
the detach block and not any more from the original (actor) context starting the request processing. To avoid
that use detach only at places inside the routing tree where no rejections are expected.

Example

val route =
detach() {
complete("Result") // route executed in future

}
Get("/") ~> route ~> check {

responseAs[String] === "Result"
}

This example demonstrates the effect of the note above:

/// / a custom directive to extract the id of the current thread
def currentThreadId: Directive1[Long] = extract(_ => Thread.currentThread().getId)
val route =
currentThreadId { originThread =>
path("rejectDetached") {

detach() {
reject()

}
} ~
path("reject") {

reject()
} ~
currentThreadId { alternativeThread =>
complete(s"$originThread,$alternativeThread")

}
}

Get("/reject") ~> route ~> check {
val Array(original, alternative) = responseAs[String].split(",")
original === alternative

}
Get("/rejectDetached") ~> route ~> check {

val Array(original, alternative) = responseAs[String].split(",")
original !== alternative

}

1.7. spray-routing 101

spray, Release $VERSION$

dynamic

Enforces that the code constructing the inner route is run for every request.

Signature

def dynamic: ByNameDirective0

Description

dynamic is a special directive because, in fact, it doesn’t implement Directive at all. That means you cannot use
it in combination with the usual directive operators.

Use dynamicIf to run the inner route constructor dynamically depending on a static condition.

Example

var value = 0
val route =
dynamic {
value += 1 /// executed for each request
complete(s"Result is now $value") // route executed in future

}
Get("/") ~> route ~> check {

responseAs[String] === "Result is now 1"
}
Get("/") ~> route ~> check {

responseAs[String] === "Result is now 2"
}

dynamicIf

Enforces that the code constructing the inner route is run for every request if the condition is true.

Signature

def dynamicIf(enabled: Boolean): ByNameDirective0

Description

The effect of dynamicIf(true) is the same as for dynamic. The effect of dynamicIf(false) is the same
as just the nested block.

dynamicIf is a special directive because, in fact, it doesn’t implement Directive at all. That means you cannot
use it in combination with the usual directive operators.

Use dynamic to run the inner route constructor dynamically unconditionally.

102 Chapter 1. Documentation

spray, Release $VERSION$

Example

def countDynamically(dyn: Boolean) = {
var value = 0
dynamicIf(dyn) {
value += 1 /// executed for each request
complete(s"Result is now $value") // route executed in future

}
}

val route =
path("dynamic")(countDynamically(true)) ~
path("static")(countDynamically(false))

Get("/dynamic") ~> route ~> check {
responseAs[String] === "Result is now 1"

}
Get("/dynamic") ~> route ~> check {

responseAs[String] === "Result is now 2"
}
Get("/dynamic") ~> route ~> check {

responseAs[String] === "Result is now 3"
}

Get("/static") ~> route ~> check {
responseAs[String] === "Result is now 1"

}
Get("/static") ~> route ~> check {

responseAs[String] === "Result is now 1"
}
Get("/static") ~> route ~> check {

responseAs[String] === "Result is now 1"
}

handleExceptions

Catches exceptions thrown by the inner route and handles them using the specified ExceptionHandler.

Signature

def handleExceptions(handler: ExceptionHandler): Directive0

Description

Using this directive is an alternative to using a global implicitly defined ExceptionHandler that applies to the
complete route.

See Exception Handling for general information about options for handling exceptions.

1.7. spray-routing 103

spray, Release $VERSION$

Example

val divByZeroHandler = ExceptionHandler {
case _: ArithmeticException => complete(StatusCodes.BadRequest, "You've got your

→˓arithmetic wrong, fool!")
}
val route =

path("divide" / IntNumber / IntNumber) { (a, b) =>
handleExceptions(divByZeroHandler) {

complete(s"The result is ${a / b}")
}

}

Get("/divide/10/5") ~> route ~> check {
responseAs[String] === "The result is 2"

}
Get("/divide/10/0") ~> route ~> check {

status === StatusCodes.BadRequest
responseAs[String] === "You've got your arithmetic wrong, fool!"

}

handleRejections

Handles rejections produced by the inner route and handles them using the specified RejectionHandler.

Signature

def handleRejections(handler: RejectionHandler): Directive0

Description

Using this directive is an alternative to using a global implicitly defined RejectionHandler that applies to the
complete route.

See Rejections for general information about options for handling rejections.

Example

val totallyMissingHandler = RejectionHandler {
case Nil /* secret code for path not found */ =>
complete(StatusCodes.NotFound, "Oh man, what you are looking for is long gone.")

}
val route =
pathPrefix("handled") {
handleRejections(totallyMissingHandler) {

path("existing")(complete("This path exists"))
}

}

Get("/handled/existing") ~> route ~> check {
responseAs[String] === "This path exists"

104 Chapter 1. Documentation

spray, Release $VERSION$

}
Get("/missing") ~> sealRoute(route) /* applies default handler */ ~> check {

status === StatusCodes.NotFound
responseAs[String] === "The requested resource could not be found."

}
Get("/handled/missing") ~> route ~> check {

status === StatusCodes.NotFound
responseAs[String] === "Oh man, what you are looking for is long gone."

}

FileAndResourceDirectives

Like the RouteDirectives the FileAndResourceDirectives are somewhat special in spray’s routing DSL. Con-
trary to all other directives they do not produce instances of type Directive[L <: HList] but rather “plain”
routes of type Route. The reason is that they are not meant for wrapping an inner route (like most other directives,
as intermediate-level elements of a route structure, do) but rather form the actual route structure leaves.

So in most cases the inner-most element of a route structure branch is one of the RouteDirectives or
FileAndResourceDirectives.

getFromBrowseableDirectory

The single-directory variant of getFromBrowseableDirectories.

Signature

def getFromBrowseableDirectory(directory: String)
(implicit renderer: Marshaller[DirectoryListing],

→˓settings: RoutingSettings,
resolver: ContentTypeResolver, refFactory:

→˓ActorRefFactory, log: LoggingContext): Route

getFromBrowseableDirectories

Serves the content of the given directories as a file system browser, i.e. files are sent and directories served as browsable
listings.

Signature

def getFromBrowseableDirectories(directories: String*)
(implicit renderer: Marshaller[DirectoryListing],

→˓settings: RoutingSettings,
resolver: ContentTypeResolver, refFactory:

→˓ActorRefFactory, log: LoggingContext): Route

1.7. spray-routing 105

spray, Release $VERSION$

Description

The getFromBrowseableDirectories is a combination of serving files from the specified directories (like
getFromDirectory) and listing a browseable directory with listDirectoryContents. Nesting this direc-
tive beneath get is not necessary as this directive will only respond to GET requests.

Use getFromBrowseableDirectory to serve only one directory. Use getFromDirectory if directory
browsing isn’t required.

getFromDirectory

Completes GET requests with the content of a file underneath the given directory.

Signature

def getFromDirectory(directoryName: String)
(implicit settings: RoutingSettings, resolver:

→˓ContentTypeResolver,
refFactory: ActorRefFactory, log: LoggingContext): Route

Description

The unmatchedPath of the RequestContext is first transformed by the given pathRewriter function before
being appended to the given directory name to build the final file name.

The actual I/O operation is running detached in a Future, so it doesn’t block the current thread. If the file cannot be
read the route rejects the request.

To serve a single file use getFromFile. To serve browsable directory listings use
getFromBrowseableDirectories. To serve files from a classpath directory use
getFromResourceDirectory instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

getFromFile

Completes GET requests with the content of the given file.

Signature

def getFromFile(fileName: String)
(implicit settings: RoutingSettings, resolver: ContentTypeResolver,

→˓refFactory: ActorRefFactory): Route
def getFromFile(file: File)

(implicit settings: RoutingSettings, resolver: ContentTypeResolver,
→˓refFactory: ActorRefFactory): Route
def getFromFile(file: File, contentType: ContentType)

(implicit settings: RoutingSettings, refFactory: ActorRefFactory):
→˓Route

106 Chapter 1. Documentation

spray, Release $VERSION$

Description

The actual I/O operation is running detached in a Future, so it doesn’t block the current thread (but potentially some
other thread !). If the file cannot be found or read the request is rejected.

To serve files from a directory use getFromDirectory, instead. To serve a file from a classpath resource use
getFromResource instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

getFromResource

Completes GET requests with the content of the given classpath resource.

Signature

def getFromResource(resourceName: String)
(implicit resolver: ContentTypeResolver, refFactory:

→˓ActorRefFactory): Route
def getFromResource(resourceName: String, contentType: ContentType)

(implicit refFactory: ActorRefFactory): Route

Description

The actual I/O operation is running detached in a Future, so it doesn’t block the current thread (but potentially some
other thread !). If the file cannot be found or read the request is rejected.

To serve files from a classpath directory use getFromResourceDirectory instead. To serve files from a filesys-
tem directory use getFromDirectory, instead.

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

getFromResourceDirectory

Completes GET requests with the content of the given classpath resource directory.

Signature

def getFromResourceDirectory(directoryName: String)
(implicit resolver: ContentTypeResolver, refFactory:

→˓ActorRefFactory, log: LoggingContext): Route

Description

The actual I/O operation is running detached in a Future, so it doesn’t block the current thread (but potentially some
other thread !). If the file cannot be found or read the request is rejected.

To serve a single resource use getFromResource, instead. To server files from a filesystem directory use
getFromDirectory instead.

1.7. spray-routing 107

spray, Release $VERSION$

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

listDirectoryContents

Completes GET requests with a unified listing of the contents of all given directories. The actual rendering of the
directory contents is performed by the in-scope Marshaller[DirectoryListing].

Signature

def listDirectoryContents(directories: String*)
(implicit renderer: Marshaller[DirectoryListing],

→˓refFactory: ActorRefFactory,
log: LoggingContext): Route

Description

The listDirectoryContents directive renders a response only for directories. To just serve
files use getFromDirectory. To serve files and provide a browseable directory listing use
getFromBrowsableDirectories instead.

The rendering can be overridden by providing a custom Marshaller[DirectoryListing].

Note that it’s not required to wrap this directive with get as this directive will only respond to GET requests.

respondWithLastModifiedHeader

Adds a Last-Modified header to all HttpResponses from its inner Route.

Signature

def respondWithLastModifiedHeader(timestamp: Long): Directive0

FormFieldDirectives

formField

An alias for formFields.

Signature

def formField(fdm: FieldDefMagnet): fdm.Out

Description

See formFields.

108 Chapter 1. Documentation

spray, Release $VERSION$

formFields

Extracts fields from POST requests generated by HTML forms.

Signature

def formFields(field: <FieldDef[T]>): Directive1[T]
def formFields(fields: <FieldDef[T_i]>*): Directive[T_0 :: ... T_i ... :: HNil]
def formFields(fields: <FieldDef[T_0]> :: ... <FieldDef[T_i]> ... :: HNil):
→˓Directive[T_0 :: ... T_i ... :: HNil]

The signature shown is simplified and written in pseudo-syntax, the real signature uses magnets.1 The type
<FieldDef> doesn’t really exist but consists of the syntactic variants as shown in the description and the exam-
ples.

Description

Form fields can be either extracted as a String or can be converted to another type. The parameter name can be supplied
either as a String or as a Symbol. Form field extraction can be modified to mark a field as required or optional or to
filter requests where a form field has a certain value:

"color" extract value of field “color” as String

"color".? extract optional value of field “color” as Option[String]

"color" ? "red" extract optional value of field “color” as String with default value "red"

"color" ! "blue" require value of field “color” to be "blue" and extract nothing

"amount".as[Int] extract value of field “amount” as Int, you need a matching Deserializer in scope for
that to work (see also Unmarshalling)

"amount".as(deserializer) extract value of field “amount” with an explicit Deserializer

You can use Case Class Extraction to group several extracted values together into a case-class instance.

Requests missing a required field or field value will be rejected with an appropriate rejection.

There’s also a singular version, formField. Query parameters can be handled in a similar way, see parameters.
If you want unified handling for both query parameters and form fields, see anyParams.

Unmarshalling

Data POSTed from HTML forms is either of type application/x-www-form-urlencoded or of type
multipart/form-data. The value of an url-encoded field is a String while the value of a multipart/
form-data-encoded field is a “body part” containing an entity. This means that different kind of deserializers are
needed depending on what the Content-Type of the request is:

• A application/x-www-form-urlencoded encoded field needs an implicit
Deserializer[Option[String], T]

• A multipart/form-data encoded field needs an implicit Deserializer[Option[BodyPart],
T]

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 109

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4

spray, Release $VERSION$

For common data-types, these implicits are predefined so that you usually don’t need to care. For custom data-types it
should usually suffice to create a Deserializer[String, T] if the value will be encoded as a String. This
should be valid for all values generated by HTML forms apart from file uploads.

Details

It should only be necessary to read and understand this paragraph if you have very special needs and need to process
arbitrary forms, especially ones not generated by HTML forms.

The formFields directive contains this logic to find and decide how to deserialize a POSTed form field:

• It tries to find implicits of both types at the definition site if possible or otherwise at least one of both. If none is
available compilation will fail with an “implicit not found” error.

• Depending on the Content-Type of the incoming request it first tries the matching (see above) one if avail-
able.

• If only a Deserializer[Option[String], T] is available when a request of type multipart/
form-data is received, this deserializer will be tried to deserialize the body part for a field if the entity is
of type text/plain or unspecified.

• If only a Deserializer[Option[BodyPart], T] is available when a request of type application/
x-www-form-urlencoded is received, this deserializer will be tried to deserialize the field value by packing
the field value into a body part with an entity of type text/plain. Deserializing will only succeed if the
deserializer accepts entities of type text/plain.

If you need to handle encoded fields of a multipart/form-data-encoded request for a custom type, you therefore
need to provide a Deserializer[Option[BodyPart], T].

Example

val route =
formFields('color, 'age.as[Int]) { (color, age) =>
complete(s"The color is '$color' and the age ten years ago was ${age - 10}")

}

Post("/", FormData(Seq("color" -> "blue", "age" -> "68"))) ~> route ~> check {
responseAs[String] === "The color is 'blue' and the age ten years ago was 58"

}

Get("/") ~> sealRoute(route) ~> check {
status === StatusCodes.BadRequest
responseAs[String] === "Request is missing required form field 'color'"

}

For more examples about the way how fields can specified see the examples for the parameters directive.

FuturesDirectives

Future directives can be used to run inner routes once the provided Future[T] has been completed.

110 Chapter 1. Documentation

spray, Release $VERSION$

onComplete

Evaluates its parameter of type Future[T], and once the Future has been completed, extracts its result as a value
of type Try[T] and passes it to the inner route.

Signature

def onComplete[T](future: Future[T])(implicit ec: ExecutionContext):
→˓Directive1[Try[T]]

The signature shown is simplified, the real signature uses magnets.1

Description

The evaluation of the inner route passed to a onComplete directive is deferred until the given future has completed and
provided with a extraction of type Try[T].

It is necessary to bring a ExecutionContext into implicit scope for this directive to work.

To handle the Failure case automatically and only work with the result value, use onSuccess. To complete with
a successful result automatically and just handle the failure result, use onFailure, instead.

Example

def divide(a: Int, b: Int): Future[Int] = Future {
a / b

}

val route =
path("divide" / IntNumber / IntNumber) { (a, b) =>
onComplete(divide(a, b)) {

case Success(value) => complete(s"The result was $value")
case Failure(ex) => complete(InternalServerError, s"An error occurred: ${ex.

→˓getMessage}")
}

}

Get("/divide/10/2") ~> route ~> check {
responseAs[String] === "The result was 5"

}

Get("/divide/10/0") ~> sealRoute(route) ~> check {
status === InternalServerError
responseAs[String] === "An error occurred: / by zero"

}

onSuccess

Evaluates its parameter of type Future[T], and once the Future has been completed successfully, extracts its
result as a value of type T and passes it to the inner route.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 111

spray, Release $VERSION$

Signature

def onSuccess(future: Future[T])(ec: ExecutionContext): Directive1[T]
def onSuccess(future: Future[L <: HList])(ec: ExecutionContext): Directive[L]

The signature shown is simplified, the real signature uses magnets.1

Description

The execution of the inner route passed to a onSuccess directive is deferred until the given future has completed
successfully, exposing the future’s value as a extraction of type T. If the future fails its failure throwable is bubbled up
to the nearest ExceptionHandler.

It is necessary to bring a ExecutionContext into implicit scope for this directive to work.

To handle the Failure case manually as well, use onComplete, instead.

Example

val route =
path("success") {
onSuccess(Future { "Ok" }) { extraction =>

complete(extraction)
}

} ~
path("failure") {
onSuccess(Future.failed[String](TestException)) { extraction =>

complete(extraction)
}

}

Get("/success") ~> route ~> check {
responseAs[String] === "Ok"

}

Get("/failure") ~> sealRoute(route) ~> check {
status === InternalServerError
responseAs[String] === "Unsuccessful future!"

}

onFailure

Completes the request with the result of the computation given as argument of type Future[T] by marshalling it
with the implicitly given ToResponseMarshaller[T]. Runs the inner route if the Future computation fails.

Signature

def onFailure(future: Future[T])(implicit m: ToResponseMarshaller[T], ec:
→˓ExecutionContext): Directive1[Throwable]

1 See The Magnet Pattern for an explanation of magnet-based overloading.

112 Chapter 1. Documentation

spray, Release $VERSION$

The signature shown is simplified, the real signature uses magnets.1

Description

If the future succeeds the request is completed using the values marshaller (this directive therefore requires a marshaller
for the future’s type to be implicitly available). The execution of the inner route passed to a onFailure directive is
deferred until the given future has completed with a failure, exposing the reason of failure as a extraction of type
Throwable.

It is necessary to bring a ExecutionContext into implicit scope for this directive to work.

To handle the successful case manually as well, use the onComplete directive, instead.

Example

val route =
path("success") {
onFailure(Future { "Ok" }) { extraction =>

failWith(extraction) // not executed.
}

} ~
path("failure") {

onFailure(Future.failed[String](TestException)) { extraction =>
failWith(extraction)

}
}

Get("/success") ~> route ~> check {
responseAs[String] === "Ok"

}

Get("/failure") ~> sealRoute(route) ~> check {
status === InternalServerError
responseAs[String] === "Unsuccessful future!"

}

All future directives take a by-name parameter so that the parameter is not evaluated at route building time but only
when the request comes in.

HeaderDirectives

Header directives can be used to extract header values from the request. To change response headers use one of the
RespondWithDirectives.

headerValue

Traverses the list of request headers with the specified function and extracts the first value the function returns as
Some(value).

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 113

spray, Release $VERSION$

Signature

def headerValue[T](f: HttpHeader Option[T]): Directive1[T]

Description

The headerValue directive is a mixture of map and find on the list of request headers. The specified function
is called once for each header until the function returns Some(value). This value is extracted and presented to the
inner route. If the function throws an exception the request is rejected with a MalformedHeaderRejection. If
the function returns None for every header the request is rejected as “NotFound”.

This directive is the basis for building other request header related directives. See headerValuePF for a nicer
syntactic alternative.

Example

def extractHostPort: HttpHeader => Option[Int] = {
case h: `Host`=> Some(h.port)
case x => None

}

val route =
headerValue(extractHostPort) { port =>
complete(s"The port was $port")

}

Get("/") ~> Host("example.com", 5043) ~> route ~> check {
responseAs[String] === "The port was 5043"

}
Get("/") ~> sealRoute(route) ~> check {

status === NotFound
responseAs[String] === "The requested resource could not be found."

}

headerValueByName

Extracts the value of the HTTP request header with the given name.

Signature

def headerValueByName(headerName: Symbol): Directive1[String]
def headerValueByName(headerName: String): Directive1[String]

Description

The name can be given as a String or as a Symbol. If no header with a matching name is found the request is
rejected with a MissingHeaderRejection. If the header is expected to be missing in some cases or to customize
handling when the header is missing use the optionalHeaderValueByName directive instead.

114 Chapter 1. Documentation

spray, Release $VERSION$

Example

val route =
headerValueByName("X-User-Id") { userId =>
complete(s"The user is $userId")

}

Get("/") ~> RawHeader("X-User-Id", "Joe42") ~> route ~> check {
responseAs[String] === "The user is Joe42"

}

Get("/") ~> sealRoute(route) ~> check {
status === BadRequest
responseAs[String] === "Request is missing required HTTP header 'X-User-Id'"

}

headerValueByType

Traverses the list of request headers and extracts the first header of the given type.

Signature

def headerValueByType[T <: HttpHeader: ClassTag](): Directive1[T]

The signature shown is simplified, the real signature uses magnets.1

Description

The headerValueByType directive finds a header of the given type in the list of request header. If no header of the
given type is found the request is rejected with a MissingHeaderRejection. If the header is expected to be miss-
ing in some cases or to customize handling when the header is missing use the optionalHeaderValueByType
directive instead.

Example

val route =
headerValueByType[Origin]() { origin
complete(s"The first origin was ${origin.originList.head}")

}

val originHeader = Origin(Seq(HttpOrigin("http://localhost:8080")))

// extract a header if the type is matching
Get("abc") ~> originHeader ~> route ~> check {

responseAs[String] === "The first origin was http://localhost:8080"
}

// reject a request if no header of the given type is present
Get("abc") ~> route ~> check {

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 115

spray, Release $VERSION$

rejection must beLike { case MissingHeaderRejection("Origin") ok }
}

headerValuePF

Calls the specified partial function with the first request header the function is isDefinedAt and extracts the result
of calling the function.

Signature

def headerValuePF[T](pf: PartialFunction[HttpHeader, T]): Directive1[T]

Description

The headerValuePF directive is an alternative syntax version of headerValue. If the function throws an excep-
tion the request is rejected with a MalformedHeaderRejection. If the function is not defined for any header the
request is rejected as “NotFound”.

Example

def extractHostPort: PartialFunction[HttpHeader, Int] = {
case h: `Host`=> h.port

}

val route =
headerValuePF(extractHostPort) { port =>
complete(s"The port was $port")

}

Get("/") ~> Host("example.com", 5043) ~> route ~> check {
responseAs[String] === "The port was 5043"

}
Get("/") ~> sealRoute(route) ~> check {

status === NotFound
responseAs[String] === "The requested resource could not be found."

}

optionalHeaderValue

Traverses the list of request headers with the specified function and extracts the first value the function returns as
Some(value).

Signature

def optionalHeaderValue[T](f: HttpHeader Option[T]): Directive1[Option[T]]

116 Chapter 1. Documentation

spray, Release $VERSION$

Description

The optionalHeaderValue directive is similar to the headerValue directive but always extracts an Option
value instead of rejecting the request if no matching header could be found.

optionalHeaderValueByName

Optionally extracts the value of the HTTP request header with the given name.

Signature

def optionalHeaderValueByName(headerName: Symbol): Directive1[Option[String]]
def optionalHeaderValueByName(headerName: String): Directive1[Option[String]]

Description

The optionalHeaderValueByName directive is similar to the headerValueByName directive but always
extracts an Option value instead of rejecting the request if no matching header could be found.

optionalHeaderValueByType

Optionally extracts the value of the HTTP request header of the given type.

Signature

def optionalHeaderValueByType[T <: HttpHeader: ClassTag](): Directive1[Option[T]]

The signature shown is simplified, the real signature uses magnets.1

Description

The optionalHeaderValueByType directive is similar to the headerValueByType directive but always
extracts an Option value instead of rejecting the request if no matching header could be found.

Example

val route =
optionalHeaderValueByType[Origin]() {
case Some(origin) complete(s"The first origin was ${origin.originList.head}")
case None complete("No Origin header found.")

}

val originHeader = Origin(Seq(HttpOrigin("http://localhost:8080")))
// extract Some(header) if the type is matching

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 117

spray, Release $VERSION$

Get("abc") ~> originHeader ~> route ~> check {
responseAs[String] === "The first origin was http://localhost:8080"

}

// extract None if no header of the given type is present
Get("abc") ~> route ~> check {

responseAs[String] === "No Origin header found."
}

optionalHeaderValuePF

Calls the specified partial function with the first request header the function is isDefinedAt and extracts the result
of calling the function.

Signature

def optionalHeaderValuePF[T](pf: PartialFunction[HttpHeader, T]):
→˓Directive1[Option[T]]

Description

The optionalHeaderValuePF directive is similar to the headerValuePF directive but always extracts an
Option value instead of rejecting the request if no matching header could be found.

HostDirectives

HostDirectives allow you to filter requests based on the hostname part of the Host header contained in incoming
requests as well as extracting its value for usage in inner routes.

host

Filter requests matching conditions against the hostname part of the Host header value in the request.

Signature

def host(hostNames: String*): Directive0
def host(predicate: String Boolean): Directive0
def host(regex: Regex): Directive1[String]

Description

The def host(hostNames: String*) overload rejects all requests with a hostname different from the given
ones.

The def host(predicate: String Boolean) overload rejects all requests for which the hostname does
not satisfy the given predicate.

118 Chapter 1. Documentation

spray, Release $VERSION$

The def host(regex: Regex) overload works a little bit different: it rejects all requests with a hostname that
doesn’t have a prefix matching the given regular expression and also extracts a String to its inner route following
this rules:

• For all matching requests the prefix string matching the regex is extracted and passed to the inner route.

• If the regex contains a capturing group only the string matched by this group is extracted.

• If the regex contains more than one capturing group an IllegalArgumentException is thrown.

Example

Matching a list of hosts:

val route =
host("api.company.com", "rest.company.com") {
complete("Ok")

}

Get() ~> Host("rest.company.com") ~> route ~> check {
status === OK
responseAs[String] === "Ok"

}

Get() ~> Host("notallowed.company.com") ~> route ~> check {
handled must beFalse

}

Making sure the host satisfies the given predicate

val shortOnly: String => Boolean = (hostname) => hostname.length < 10

val route =
host(shortOnly) {
complete("Ok")

}

Get() ~> Host("short.com") ~> route ~> check {
status === OK
responseAs[String] === "Ok"

}

Get() ~> Host("verylonghostname.com") ~> route ~> check {
handled must beFalse

}

Using a regular expressions:

val route =
host("api|rest".r) { prefix =>
complete(s"Extracted prefix: $prefix")

} ~
host("public.(my|your)company.com".r) { captured =>
complete(s"You came through $captured company")

}

Get() ~> Host("api.company.com") ~> route ~> check {
status === OK

1.7. spray-routing 119

spray, Release $VERSION$

responseAs[String] === "Extracted prefix: api"
}

Get() ~> Host("public.mycompany.com") ~> route ~> check {
status === OK
responseAs[String] === "You came through my company"

}

Beware that in the case of introducing multiple capturing groups in the regex such as in the case bellow, the directive
will fail at runtime, at the moment the route tree is evaluated for the first time. This might cause your http handler
actor to enter in a fail/restart loop depending on your supervision strategy.

{
host("server-([0-9]).company.(com|net|org)".r) { target =>
complete("Will never complete :'(")

}
} must throwAn[IllegalArgumentException]

hostName

Extracts the hostname part of the Host header value in the request.

Signature

def hostName: Directive1[String]

Description

Extract the hostname part of the Host request header and expose it as a String extraction to its inner route.

Example

val route =
hostName { hn =>
complete(s"Hostname: $hn")

}

Get() ~> Host("company.com", 9090) ~> route ~> check {
status === OK
responseAs[String] === "Hostname: company.com"

}

Marshalling Directives

Marshalling directives work in conjunction with spray.httpx.marshalling and spray.httpx.
unmarshalling to convert a request entity to a specific type or a type to a response. See marshalling and un-
marshalling for specific serialization (also known as pickling) guidance.

Marshalling directives usually rely on an in-scope implicit marshaller to handle conversion.

120 Chapter 1. Documentation

spray, Release $VERSION$

entity

Unmarshalls the request entity to the given type and passes it to its inner Route. An umarshaller returns an Either
with Right(value) if successful or Left(exception) for a failure. The entity method will either pass the
value to the inner route or map the exception to a spray.routing.Rejection.

Signature

def entity[T](um: FromRequestUnmarshaller[T]): Directive1[T]

Description

The entity directive works in conjuction with as and spray.httpx.unmarshalling to convert some serial-
ized “wire format” value into a higher-level object structure. The unmarshalling documentation explains this process
in detail. This directive simplifies extraction and error handling to the specified type from the request.

An unmarshaller will return a Left(exception) in the case of an error. This is converted to a spray.routing.
Rejection within the entity directive. The following table lists how exceptions are mapped to rejections:

Left(exception) Rejection
ContentExpected RequestEntityExpectedRejection
UnsupportedContentTypeUnsupportedRequestContentTypeRejection, which lists the

supported types
MaformedContent MalformedRequestContentRejection, with an error message and

cause

Examples

The following example uses spray-json to unmarshall a json request into a simple Person class. It utilizes
SprayJsonSupport via the PersonJsonSupport object as the in-scope unmarshaller.

case class Person(name: String, favoriteNumber: Int)

object PersonJsonSupport extends DefaultJsonProtocol with SprayJsonSupport {
implicit val PortofolioFormats = jsonFormat2(Person)

}

import PersonJsonSupport._

val route = post {
entity(as[Person]) { person =>
complete(s"Person: ${person.name} - favorite number: ${person.favoriteNumber}")

}
}

Post("/", HttpEntity(`application/json`, """{ "name": "Jane", "favoriteNumber" : 42 }"
→˓"")) ~>
route ~> check {
responseAs[String] === "Person: Jane - favorite number: 42"

}

1.7. spray-routing 121

spray, Release $VERSION$

produce

Uses the marshaller for a given type to produce a completion function that is passed to its inner route. You can use it
to decouple marshaller resolution from request completion.

Signature

def produce[T](marshaller: ToResponseMarshaller[T]): Directive[(T Unit) :: HNil]

Description

The produce directive works in conjuction with instanceOf and spray.httpx.marshalling to convert
higher-level (object) structure into some lower-level serialized “wire format”. The marshalling documentation explains
this process in detail. This directive simplifies exposing types to clients via a route while providing some form of access
to the current context.

produce is similar to handleWith. The main difference is with produce you must eventually call the completion
function generated by produce. handleWith will automatically call complete when the handleWith function
returns.

Examples

The following example uses spray-json to marshall a simple Person class to a json response. It utilizes
SprayJsonSupport via the PersonJsonSupport object as the in-scope unmarshaller.

object PersonJsonSupport extends DefaultJsonProtocol with SprayJsonSupport {
implicit val PortofolioFormats = jsonFormat2(Person)

}

case class Person(name: String, favoriteNumber: Int)

The findPerson takes an argument of type Person => Unit which is generated by the produce call. We can
handle any logic we want in findPerson and call our completion function to complete the request.

import PersonJsonSupport._

val findPerson = (f: Person => Unit) => {

//... some processing logic...

//complete the request
f(Person("Jane", 42))

}

val route = get {
produce(instanceOf[Person]) { completionFunction => ctx =>

→˓findPerson(completionFunction) }
}

Get("/") ~> route ~> check {
mediaType === `application/json`
responseAs[String] must contain(""""name": "Jane"""")

122 Chapter 1. Documentation

spray, Release $VERSION$

responseAs[String] must contain(""""favoriteNumber": 42""")
}

handleWith

Completes the request using the given function. The input to the function is produced with the in-scope entity un-
marshaller and the result value of the function is marshalled with the in-scope marshaller. handleWith can be a
convenient method combining entity with complete.

Signature

def handleWith[A, B](f: A B)(implicit um: FromRequestUnmarshaller[A], m:
→˓ToResponseMarshaller[B]): Route

Description

The handleWith directive is used when you want to handle a route with a given function of type A B.
handleWith will use both an in-scope unmarshaller to convert a request into type A and an in-scope marshaller
to convert type B into a response. This is helpful when your core business logic resides in some other class or you
want your business logic to be independent of Spray. You can use handleWith to “hand off” processing to a given
function without requiring any spray-specific functionality.

handleWith is similar to produce. The main difference is handleWith automatically calls complete when
the function passed to handleWith returns. Using produce you must explicity call the completion function passed
from the produce function.

See marshalling and unmarshalling for guidance on marshalling entities with Spray.

Examples

The following example uses an updatePerson function with a Person case class as an input and output. We plug
this function into our route using handleWith.

case class Person(name: String, favoriteNumber: Int)

import PersonJsonSupport._

val updatePerson = (person: Person) => {

//... some processing logic...

//return the person
person

}

val route = post {
handleWith(updatePerson)

}

Post("/", HttpEntity(`application/json`, """{ "name": "Jane", "favoriteNumber" : 42 }
→˓""")) ~>

1.7. spray-routing 123

spray, Release $VERSION$

route ~> check {
mediaType === `application/json`
responseAs[String] must contain(""""name": "Jane"""")
responseAs[String] must contain(""""favoriteNumber": 42""")

}

The PersonJsonSupport object handles both marshalling and unmarshalling of the Person case class.

object PersonJsonSupport extends DefaultJsonProtocol with SprayJsonSupport {
implicit val PortofolioFormats = jsonFormat2(Person)

}

Understanding Specific Marshalling Directives

direc-
tive

behavior

entity Unmarshalls the request entity to the given type and passes it to its inner route. Used in conjection with
as to convert requests to objects.

produce Uses a marshaller for a given type to produce a completion function for an inner route. Used in
conjuction with instanceOf to format responses.

handle-
With

Completes a request with a given function, using an in-scope unmarshaller for an input and in-scope
marshaller for the output.

MethodDirectives

delete

Matches requests with HTTP method DELETE.

Signature

def delete: Directive0

Description

This directive filters an incoming request by its HTTP method. Only requests with method DELETE are passed on to
the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

Example

val route = Directives.delete { complete("This is a DELETE request.") }

Delete("/") ~> route ~> check {
responseAs[String] === "This is a DELETE request."

}

124 Chapter 1. Documentation

spray, Release $VERSION$

get

Matches requests with HTTP method GET.

Signature

def get: Directive0

Description

This directive filters the incoming request by its HTTP method. Only requests with method GET are passed on to
the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

Example

val route = get { complete("This is a GET request.") }

Get("/") ~> route ~> check {
responseAs[String] === "This is a GET request."

}

head

Matches requests with HTTP method HEAD.

Signature

def head: Directive0

Description

This directive filters the incoming request by its HTTP method. Only requests with method HEAD are passed on to
the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

Note: By default, spray-can handles HEAD-requests transparently by dispatching a GET-request to the handler and
stripping of the result body. See the spray.can.server.transparent-head-requests setting for how to
disable this behavior.

1.7. spray-routing 125

spray, Release $VERSION$

Example

val route = head { complete("This is a HEAD request.") }

Head("/") ~> route ~> check {
responseAs[String] === "This is a HEAD request."

}

method

Matches HTTP requests based on their method.

Signature

/**
* Rejects all requests whose HTTP method does not match the given one.

*/
def method(httpMethod: HttpMethod): Directive0 =

extract(_.request.method).flatMap[HNil] {
case `httpMethod` pass
case _ reject(MethodRejection(httpMethod))

} & cancelAllRejections(ofType[MethodRejection])

Description

This directive filters the incoming request by its HTTP method. Only requests with the specified method are passed
on to the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method
Not Allowed response by the default RejectionHandler.

Example

val route = method(HttpMethods.PUT) { complete("This is a PUT request.") }

Put("/", "put content") ~> route ~> check {
responseAs[String] === "This is a PUT request."

}

Get("/") ~> sealRoute(route) ~> check {
status === StatusCodes.MethodNotAllowed
responseAs[String] === "HTTP method not allowed, supported methods: PUT"

}

options

Matches requests with HTTP method OPTIONS.

126 Chapter 1. Documentation

spray, Release $VERSION$

Signature

def options: Directive0

Description

This directive filters the incoming request by its HTTP method. Only requests with method OPTIONS are passed on
to the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

Example

val route = options { complete("This is an OPTIONS request.") }

Options("/") ~> route ~> check {
responseAs[String] === "This is an OPTIONS request."

}

overrideMethodWithParameter

Changes the HTTP method of the request to the value of the specified query string parameter. If the query string
parameter is not specified this directive has no effect. If the query string is specified as something that is not a HTTP
method, then this directive completes the request with a 501 Not Implemented response.

This directive is useful for:

• Use in combination with JSONP (JSONP only supports GET)

• Supporting older browsers that lack support for certain HTTP methods. E.g. IE8 does not support PATCH

patch

Matches requests with HTTP method PATCH.

Signature

def patch: Directive0

Description

This directive filters the incoming request by its HTTP method. Only requests with method PATCH are passed on to
the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

1.7. spray-routing 127

spray, Release $VERSION$

Example

val route = patch { complete("This is a PATCH request.") }

Patch("/", "patch content") ~> route ~> check {
responseAs[String] === "This is a PATCH request."

}

post

Matches requests with HTTP method POST.

Signature

def post: Directive0

Description

This directive filters the incoming request by its HTTP method. Only requests with method POST are passed on to
the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

Example

val route = post { complete("This is a POST request.") }

Post("/", "post content") ~> route ~> check {
responseAs[String] === "This is a POST request."

}

put

Matches requests with HTTP method PUT.

Signature

def put: Directive0

Description

This directive filters the incoming request by its HTTP method. Only requests with method PUT are passed on to
the inner route. All others are rejected with a MethodRejection, which is translated into a 405 Method Not
Allowed response by the default RejectionHandler.

128 Chapter 1. Documentation

spray, Release $VERSION$

Example

val route = put { complete("This is a PUT request.") }

Put("/", "put content") ~> route ~> check {
responseAs[String] === "This is a PUT request."

}

MiscDirectives

cancelAllRejections

Cancels all rejections created by the inner route for which the condition argument function returns true.

Signature

def cancelAllRejections(cancelFilter: Rejection Boolean): Directive0

Description

Use the cancelRejection to cancel a specific rejection instance.

Example

def isMethodRejection: Rejection => Boolean = {
case MethodRejection(_) => true
case _ => false

}

val route =
cancelAllRejections(isMethodRejection) {
post {

complete("Result")
}

}

Get("/") ~> route ~> check {
rejections === Nil
handled === false

}

cancelRejection

Cancels a rejection that is equal to the given one.

1.7. spray-routing 129

spray, Release $VERSION$

Signature

def cancelRejection(rejection: Rejection): Directive0

Description

Use cancelAllRejections to cancel rejections by predicate.

Example

val route =
cancelRejection(MethodRejection(HttpMethods.POST)) {
post {

complete("Result")
}

}

Get("/") ~> route ~> check {
rejections === Nil
handled === false

}

clientIP

Provides the value of X-Forwarded-For, Remote-Address, or X-Real-IP headers as an instance of
HttpIp.

Signature

def clientIP: Directive1[RemoteAddress]

Description

spray-can and spray-servlet adds the Remote-Address header to every request automatically if the respective set-
ting spray.can.server.remote-address-header or spray.servlet.remote-address-header
is set to on. Per default it is set to off.

Example

val route = clientIP { ip =>
complete("Client's ip is " + ip.toOption.map(_.getHostAddress).getOrElse("unknown"))

}

Get("/").withHeaders(`Remote-Address`("192.168.3.12")) ~> route ~> check {
responseAs[String] === "Client's ip is 192.168.3.12"

}

130 Chapter 1. Documentation

spray, Release $VERSION$

jsonpWithParameter

Wraps a response of type application/json with an invocation to a callback function which name is given as an
argument. The new type of the response is application/javascript.

Signature

def jsonpWithParameter(parameterName: String): Directive0

Description

Find more information about JSONP in Wikipedia. Note that JSONP is not considered the solution of choice for many
reasons. Be sure to understand its drawbacks and security implications.

Example

case class Test(abc: Int)
object TestProtocol {

import spray.json.DefaultJsonProtocol._
implicit val testFormat = jsonFormat(Test, "abc")

}
val route =
jsonpWithParameter("jsonp") {
import TestProtocol._
import spray.httpx.SprayJsonSupport._
complete(Test(456))

}

Get("/?jsonp=result") ~> route ~> check {
responseAs[String] ===
"""result({

| "abc": 456
|})""".stripMarginWithNewline("\n")

contentType === MediaTypes.`application/javascript`.withCharset(HttpCharsets.`UTF-
→˓8`)
}
Get("/") ~> route ~> check {

responseAs[String] ===
"""{

| "abc": 456
|}""".stripMarginWithNewline("\n")

contentType === ContentTypes.`application/json`
}

rejectEmptyResponse

Replaces a response with no content with an empty rejection.

1.7. spray-routing 131

http://en.wikipedia.org/wiki/JSONP

spray, Release $VERSION$

Signature

def rejectEmptyResponse: Directive0

Description

The rejectEmptyResponse directive is mostly used with marshalling Option[T] instances. The value None
is usually marshalled to an empty but successful result. In many cases None should instead be handled as 404 Not
Found which is the effect of using rejectEmptyResponse.

Example

val route = rejectEmptyResponse {
path("even" / IntNumber) { i =>
complete {

// returns Some(evenNumberDescription) or None
Option(i).filter(_ % 2 == 0).map { num =>

s"Number $num is even."
}

}
}

}

Get("/even/23") ~> sealRoute(route) ~> check {
status === StatusCodes.NotFound

}
Get("/even/28") ~> route ~> check {

responseAs[String] === "Number 28 is even."
}

requestEntityEmpty

A filter that checks if the request entity is empty and only then passes processing to the inner route. Otherwise, the
request is rejected.

Signature

def requestEntityEmpty: Directive0

Description

The opposite filter is available as requestEntityPresent.

Example

132 Chapter 1. Documentation

spray, Release $VERSION$

val route =
requestEntityEmpty {
complete("request entity empty")

} ~
requestEntityPresent {
complete("request entity present")

}

Post("/", "text") ~> sealRoute(route) ~> check {
responseAs[String] === "request entity present"

}
Post("/") ~> route ~> check {
responseAs[String] === "request entity empty"

}

requestEntityPresent

A simple filter that checks if the request entity is present and only then passes processing to the inner route. Otherwise,
the request is rejected.

Signature

def requestEntityPresent: Directive0

Description

The opposite filter is available as requestEntityEmpty.

Example

val route =
requestEntityEmpty {
complete("request entity empty")

} ~
requestEntityPresent {
complete("request entity present")

}

Post("/", "text") ~> sealRoute(route) ~> check {
responseAs[String] === "request entity present"

}
Post("/") ~> route ~> check {
responseAs[String] === "request entity empty"

}

requestInstance

Extracts the complete HttpRequest instance.

1.7. spray-routing 133

spray, Release $VERSION$

Signature

def requestInstance: Directive1[HttpRequest]

Description

Use requestUri to extract just the complete URI of the request. Usually there’s little use of extracting the complete
request because extracting of most of the aspects of HttpRequests is handled by specialized directives. See Directives
filtering or extracting from the request.

Example

val route =
requestInstance { request =>
complete(s"Request method is ${request.method} and length is ${request.entity.

→˓data.length}")
}

Post("/", "text") ~> route ~> check {
responseAs[String] === "Request method is POST and length is 4"

}
Get("/") ~> route ~> check {

responseAs[String] === "Request method is GET and length is 0"
}

requestUri

Access the full URI of the request.

Signature

def requestUri: Directive1[Uri]

Description

Use SchemeDirectives, HostDirectives, PathDirectives, and ParameterDirectives for more targeted access to parts of
the URI.

Example

val route =
requestUri { uri =>
complete(s"Full URI: $uri")

}

Get("/") ~> route ~> check {

134 Chapter 1. Documentation

spray, Release $VERSION$

// tests are executed with the host assumed to be "example.com"
responseAs[String] === "Full URI: http://example.com/"

}
Get("/test") ~> route ~> check {

responseAs[String] === "Full URI: http://example.com/test"
}

rewriteUnmatchedPath

Transforms the unmatchedPath field of the request context for inner routes.

Signature

def rewriteUnmatchedPath(f: Uri.Path Uri.Path): Directive0

Description

The rewriteUnmatchedPath directive is used as a building block for writing Custom Directives. You can use it
for implementing custom path matching directives.

Use unmatchedPath for extracting the current value of the unmatched path.

Example

def ignore456(path: Path) = path match {
case s@Path.Segment(head, tail) if head.startsWith("456") =>
val newHead = head.drop(3)
if (newHead.isEmpty) tail
else s.copy(head = head.drop(3))

case _ => path
}
val ignoring456 = rewriteUnmatchedPath(ignore456)

val route =
pathPrefix("123") {
ignoring456 {

path("abc") {
complete(s"Content")

}
}

}

Get("/123/abc") ~> route ~> check {
responseAs[String] === "Content"

}
Get("/123456/abc") ~> route ~> check {

responseAs[String] === "Content"
}

1.7. spray-routing 135

spray, Release $VERSION$

unmatchedPath

Extracts the unmatched path from the request context.

Signature

def unmatchedPath: Directive1[Uri.Path]

Description

The unmatchedPath directive extracts the remaining path that was not yet matched by any of the PathDirectives
(or any custom ones that change the unmatched path field of the request context). You can use it for building directives
that handle complete suffixes of paths (like the getFromDirectory directives and similar ones).

Use rewriteUnmatchedPath to change the value of the unmatched path.

Example

val route =
pathPrefix("abc") {
unmatchedPath { remaining =>

complete(s"Unmatched: '$remaining'")
}

}

Get("/abc") ~> route ~> check {
responseAs[String] === "Unmatched: ''"

}
Get("/abc/456") ~> route ~> check {

responseAs[String] === "Unmatched: '/456'"
}

validate

Checks an arbitrary condition and passes control to the inner route if it returns true. Otherwise, rejects the request
with a ValidationRejection containing the given error message.

Signature

def validate(check: Boolean, errorMsg: String): Directive0

Example

val route =
requestUri { uri =>
validate(uri.path.toString.size < 5, s"Path too long: '${uri.path.toString}'") {

complete(s"Full URI: $uri")

136 Chapter 1. Documentation

spray, Release $VERSION$

}
}

Get("/234") ~> route ~> check {
responseAs[String] === "Full URI: http://example.com/234"

}
Get("/abcdefghijkl") ~> route ~> check {

rejection === ValidationRejection("Path too long: '/abcdefghijkl'", None)
}

ParameterDirectives

parameter

An alias for parameters.

Signature

def parameter(pdm: ParamDefMagnet): pdm.Out

Description

See parameters

Example

val route =
parameter('color) { color =>
complete(s"The color is '$color'")

}

Get("/?color=blue") ~> route ~> check {
responseAs[String] === "The color is 'blue'"

}

Get("/") ~> sealRoute(route) ~> check {
status === StatusCodes.NotFound
responseAs[String] === "Request is missing required query parameter 'color'"

}

parameterMap

Extracts all parameters at once as a Map[String, String] mapping parameter names to parameter values.

1.7. spray-routing 137

spray, Release $VERSION$

Signature

def parameterMap: Directive1[Map[String, String]]

Description

If a query contains a parameter value several times, the map will contain the last one.

See When to use which parameter directive? for other choices.

Example

val route =
parameterMap { params =>
def paramString(param: (String, String)): String = s"""${param._1} = '${param._2}'

→˓"""
complete(s"The parameters are ${params.map(paramString).mkString(", ")}")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "The parameters are color = 'blue', count = '42'"

}
Get("/?x=1&x=2") ~> route ~> check {

responseAs[String] === "The parameters are x = '2'"
}

parameterMultiMap

Extracts all parameters at once as a multi-map of type Map[String, List[String] mapping a parameter name
to a list of all its values.

Signature

def parameterMultiMap: Directive1[Map[String, List[String]]]

Description

This directive can be used if parameters can occur several times. The order of values is not specified.

See When to use which parameter directive? for other choices.

Example

val route =
parameterMultiMap { params =>
complete(s"There are parameters ${params.map(x => x._1+" -> "+x._2.size).mkString(

→˓", ")}")

138 Chapter 1. Documentation

spray, Release $VERSION$

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "There are parameters color -> 1, count -> 1"

}
Get("/?x=23&x=42") ~> route ~> check {

responseAs[String] === "There are parameters x -> 2"
}

parameters

The parameters directive filters on the existence of several query parameters and extract their values.

Signature

def parameters(param: <ParamDef[T]>): Directive1[T]
def parameters(params: <ParamDef[T_i]>*): Directive[T_0 :: ... T_i ... :: HNil]
def parameters(params: <ParamDef[T_0]> :: ... <ParamDef[T_i]> ... :: HNil):
→˓Directive[T_0 :: ... T_i ... :: HNil]

The signature shown is simplified and written in pseudo-syntax, the real signature uses magnets.1 The type
<ParamDef> doesn’t really exist but consists of the syntactic variants as shown in the description and the exam-
ples.

Description

Query parameters can be either extracted as a String or can be converted to another type. The parameter name can be
supplied either as a String or as a Symbol. Parameter extraction can be modified to mark a query parameter as required
or optional or to filter requests where a parameter has a certain value:

"color" extract value of parameter “color” as String

"color".? extract optional value of parameter “color” as Option[String]

"color" ? "red" extract optional value of parameter “color” as String with default value "red"

"color" ! "blue" require value of parameter “color” to be "blue" and extract nothing

"amount".as[Int] extract value of parameter “amount” as Int, you need a matching Deserializer in scope
for that to work (see also Unmarshalling)

"amount".as(deserializer) extract value of parameter “amount” with an explicit Deserializer

You can use Case Class Extraction to group several extracted values together into a case-class instance.

Requests missing a required parameter or parameter value will be rejected with an appropriate rejection.

There’s also a singular version, parameter. Form fields can be handled in a similar way, see formFields. If you
want unified handling for both query parameters and form fields, see anyParams.

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 139

spray, Release $VERSION$

Examples

Required parameter

val route =
parameters('color, 'backgroundColor) { (color, backgroundColor) =>
complete(s"The color is '$color' and the background is '$backgroundColor'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> sealRoute(route) ~> check {

status === StatusCodes.NotFound
responseAs[String] === "Request is missing required query parameter 'backgroundColor

→˓'"
}

Optional parameter

val route =
parameters('color, 'backgroundColor.?) { (color, backgroundColor) =>
val backgroundStr = backgroundColor.getOrElse("<undefined>")
complete(s"The color is '$color' and the background is '$backgroundStr'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> route ~> check {

responseAs[String] === "The color is 'blue' and the background is '<undefined>'"
}
val route =

parameters('color, 'backgroundColor ? "white") { (color, backgroundColor) =>
complete(s"The color is '$color' and the background is '$backgroundColor'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

}
Get("/?color=blue") ~> route ~> check {

responseAs[String] === "The color is 'blue' and the background is 'white'"
}

Optional parameter with default value

val route =
parameters('color, 'backgroundColor ? "white") { (color, backgroundColor) =>
complete(s"The color is '$color' and the background is '$backgroundColor'")

}

Get("/?color=blue&backgroundColor=red") ~> route ~> check {
responseAs[String] === "The color is 'blue' and the background is 'red'"

140 Chapter 1. Documentation

spray, Release $VERSION$

}
Get("/?color=blue") ~> route ~> check {

responseAs[String] === "The color is 'blue' and the background is 'white'"
}

Parameter with required value

val route =
parameters('color, 'action ! "true") { (color) =>
complete(s"The color is '$color'.")

}

Get("/?color=blue&action=true") ~> route ~> check {
responseAs[String] === "The color is 'blue'."

}

Get("/?color=blue&action=false") ~> sealRoute(route) ~> check {
status === StatusCodes.NotFound
responseAs[String] === "The requested resource could not be found."

}

Deserialized parameter

val route =
parameters('color, 'count.as[Int]) { (color, count) =>
complete(s"The color is '$color' and you have $count of it.")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "The color is 'blue' and you have 42 of it."

}

Get("/?color=blue&count=blub") ~> sealRoute(route) ~> check {
status === StatusCodes.BadRequest
responseAs[String] === "The query parameter 'count' was malformed:\n'blub' is not a

→˓valid 32-bit integer value"
}

parameterSeq

Extracts all parameters at once in the original order as (name, value) tuples of type (String, String).

Signature

def parameterSeq: Directive1[Seq[(String, String)]]

Description

This directive can be used if the exact order of parameters is important or if parameters can occur several times.

1.7. spray-routing 141

spray, Release $VERSION$

See When to use which parameter directive? for other choices.

Example

val route =
parameterSeq { params =>
def paramString(param: (String, String)): String = s"""${param._1} = '${param._2}'

→˓"""
complete(s"The parameters are ${params.map(paramString).mkString(", ")}")

}

Get("/?color=blue&count=42") ~> route ~> check {
responseAs[String] === "The parameters are color = 'blue', count = '42'"

}
Get("/?x=1&x=2") ~> route ~> check {

responseAs[String] === "The parameters are x = '1', x = '2'"
}

When to use which parameter directive?

Usually, you want to use the high-level parameters directive. When you need more low-level access you can use the
table below to decide which directive to use which shows properties of different parameter directives.

directive level ordering multi
parameter high no no
parameters high no no
parameterMap low no no
parameterMultiMap low no yes
parameterSeq low yes yes

level high-level parameter directives extract subset of all parameters by name and allow conversions and automatically
report errors if expectations are not met, low-level directives give you all parameters at once, leaving all further
processing to you

ordering original ordering from request URL is preserved

multi multiple values per parameter name are possible

PathDirectives

path

Matches the complete unmatched path of the RequestContext against the given PathMatcher, potentially
extracts one or more values (depending on the type of the argument).

Signature

def path[L <: HList](pm: PathMatcher[L]): Directive[L]

142 Chapter 1. Documentation

spray, Release $VERSION$

Description

This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by other potentially
existing pathPrefix directives on higher levels of the routing structure. Its one parameter is usually an expression
evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to the rawPathPrefix or rawPathPrefixTest directives path automatically adds a leading slash to its
PathMatcher argument, you therefore don’t have to start your matching expression with an explicit slash.

The path directive attempts to match the complete remaining path, not just a prefix. If you only want to match a path
prefix and then delegate further filtering to a lower level in your routing structure use the pathPrefix directive instead.
As a consequence it doesn’t make sense to nest a path or pathPrefix directive underneath another path directive,
as there is no way that they will ever match (since the unmatched path underneath a path directive will always be
empty).

Depending on the type of its PathMatcher argument the path directive extracts zero or more values from the URI.
If the match fails the request is rejected with an empty rejection set.

Example

val route =
path("foo") {
complete("/foo")

} ~
path("foo" / "bar") {
complete("/foo/bar")

} ~
pathPrefix("ball") {
pathEnd {

complete("/ball")
} ~
path(IntNumber) { int =>

complete(if (int % 2 == 0) "even ball" else "odd ball")
}

}

Get("/") ~> route ~> check {
handled === false

}

Get("/foo") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/bar") ~> route ~> check {
responseAs[String] === "/foo/bar"

}

Get("/ball/1337") ~> route ~> check {
responseAs[String] === "odd ball"

}

1.7. spray-routing 143

spray, Release $VERSION$

pathEnd

Only passes the request to its inner route if the unmatched path of the RequestContext is empty, i.e. the request
path has been fully matched by a higher-level path or pathPrefix directive.

Signature

def pathEnd: Directive0

Description

This directive is a simple alias for rawPathPrefix(PathEnd) and is mostly used on an inner-level to discriminate
“path already fully matched” from other alternatives (see the example below).

Example

val route =
pathPrefix("foo") {
pathEnd {

complete("/foo")
} ~
path("bar") {

complete("/foo/bar")
}

}

Get("/foo") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/") ~> route ~> check {
handled === false

}

Get("/foo/bar") ~> route ~> check {
responseAs[String] === "/foo/bar"

}

pathEndOrSingleSlash

Only passes the request to its inner route if the unmatched path of the RequestContext is either empty or contains
only one single slash.

Signature

def pathEndOrSingleSlash: Directive0

144 Chapter 1. Documentation

spray, Release $VERSION$

Description

This directive is a simple alias for rawPathPrefix(Slash.? ~ PathEnd) and is mostly used on an inner-level
to discriminate “path already fully matched” from other alternatives (see the example below).

It is equivalent to pathEnd | pathSingleSlash but slightly more efficient.

Example

val route =
pathPrefix("foo") {
pathEndOrSingleSlash {

complete("/foo")
} ~
path("bar") {

complete("/foo/bar")
}

}

Get("/foo") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/") ~> route ~> check {
responseAs[String] === "/foo"

}

Get("/foo/bar") ~> route ~> check {
responseAs[String] === "/foo/bar"

}

pathPrefix

Matches and consumes a prefix of the unmatched path of the RequestContext against the given PathMatcher,
potentially extracts one or more values (depending on the type of the argument).

Signature

def pathPrefix[L <: HList](pm: PathMatcher[L]): Directive[L]

Description

This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by other potentially
existing pathPrefix or rawPathPrefix directives on higher levels of the routing structure. Its one parameter is
usually an expression evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to its rawPathPrefix counterpart pathPrefix automatically adds a leading slash to its PathMatcher
argument, you therefore don’t have to start your matching expression with an explicit slash.

Depending on the type of its PathMatcher argument the pathPrefix directive extracts zero or more values from
the URI. If the match fails the request is rejected with an empty rejection set.

1.7. spray-routing 145

spray, Release $VERSION$

Example

val route =
pathPrefix("ball") {
pathEnd {

complete("/ball")
} ~
path(IntNumber) { int =>

complete(if (int % 2 == 0) "even ball" else "odd ball")
}

}

Get("/") ~> route ~> check {
handled === false

}

Get("/ball") ~> route ~> check {
responseAs[String] === "/ball"

}

Get("/ball/1337") ~> route ~> check {
responseAs[String] === "odd ball"

}

pathPrefixTest

Checks whether the unmatched path of the RequestContext has a prefix matched by the given PathMatcher.
Potentially extracts one or more values (depending on the type of the argument) but doesn’t consume its match from
the unmatched path.

Signature

def pathPrefixTest[L <: HList](pm: PathMatcher[L]): Directive[L]

Description

This directive is very similar to the pathPrefix directive with the one difference that the path prefix it matched (if it
matched) is not consumed. The unmatched path of the RequestContext is therefore left as is even in the case that
the directive successfully matched and the request is passed on to its inner route.

For more info on how to create a PathMatcher see The PathMatcher DSL.

As opposed to its rawPathPrefixTest counterpart pathPrefixTest automatically adds a leading slash to its
PathMatcher argument, you therefore don’t have to start your matching expression with an explicit slash.

Depending on the type of its PathMatcher argument the pathPrefixTest directive extracts zero or more values
from the URI. If the match fails the request is rejected with an empty rejection set.

146 Chapter 1. Documentation

spray, Release $VERSION$

Example

val completeWithUnmatchedPath =
unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefixTest("foo" | "bar") {
pathPrefix("foo") { completeWithUnmatchedPath } ~
pathPrefix("bar") { completeWithUnmatchedPath }

}

Get("/foo/doo") ~> route ~> check {
responseAs[String] === "/doo"

}

Get("/bar/yes") ~> route ~> check {
responseAs[String] === "/yes"

}

pathSingleSlash

Only passes the request to its inner route if the unmatched path of the RequestContext contains exactly one single
slash.

Signature

def pathSingleSlash: Directive0

Description

This directive is a simple alias for pathPrefix(PathEnd) and is mostly used for matching requests to the root
URI (/) on an inner-level to discriminate “all path segments matched” from other alternatives (see the example below).

Example

val route =
pathSingleSlash {
complete("root")

} ~
pathPrefix("ball") {
pathSingleSlash {

complete("/ball/")
} ~
path(IntNumber) { int =>

complete(if (int % 2 == 0) "even ball" else "odd ball")
}

}

1.7. spray-routing 147

spray, Release $VERSION$

Get("/") ~> route ~> check {
responseAs[String] === "root"

}

Get("/ball") ~> route ~> check {
handled === false

}

Get("/ball/") ~> route ~> check {
responseAs[String] === "/ball/"

}

Get("/ball/1337") ~> route ~> check {
responseAs[String] === "odd ball"

}

pathSuffix

Matches and consumes a suffix of the unmatched path of the RequestContext against the given PathMatcher,
potentially extracts one or more values (depending on the type of the argument).

Signature

def pathSuffix[L <: HList](pm: PathMatcher[L]): Directive[L]

Description

This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by other potentially
existing path matching directives on higher levels of the routing structure. Its one parameter is usually an expression
evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to pathPrefix this directive matches and consumes the unmatched path from the right, i.e. the end.

Caution: For efficiency reasons, the given PathMatcher must match the desired suffix in reversed-segment
order, i.e. pathSuffix("baz" / "bar") would match /foo/bar/baz! The order within a segment
match is not reversed.

Depending on the type of its PathMatcher argument the pathPrefix directive extracts zero or more values from
the URI. If the match fails the request is rejected with an empty rejection set.

Example

val completeWithUnmatchedPath =
unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefix("start") {

148 Chapter 1. Documentation

spray, Release $VERSION$

pathSuffix("end") {
completeWithUnmatchedPath

} ~
pathSuffix("foo" / "bar" ~ "baz") {

completeWithUnmatchedPath
}

}

Get("/start/middle/end") ~> route ~> check {
responseAs[String] === "/middle/"

}

Get("/start/something/barbaz/foo") ~> route ~> check {
responseAs[String] === "/something/"

}

pathSuffixTest

Checks whether the unmatched path of the RequestContext has a suffix matched by the given PathMatcher.
Potentially extracts one or more values (depending on the type of the argument) but doesn’t consume its match from
the unmatched path.

Signature

def pathSuffixTest[L <: HList](pm: PathMatcher[L]): Directive[L]

Description

This directive is very similar to the pathSuffix directive with the one difference that the path suffix it matched (if it
matched) is not consumed. The unmatched path of the RequestContext is therefore left as is even in the case that
the directive successfully matched and the request is passed on to its inner route.

As opposed to pathPrefixTest this directive matches and consumes the unmatched path from the right, i.e. the end.

Caution: For efficiency reasons, the given PathMatcher must match the desired suffix in reversed-segment
order, i.e. pathSuffixTest("baz" / "bar")would match /foo/bar/baz! The order within a segment
match is not reversed.

Depending on the type of its PathMatcher argument the pathSuffixTest directive extracts zero or more values
from the URI. If the match fails the request is rejected with an empty rejection set.

Example

val completeWithUnmatchedPath =
unmatchedPath { p =>
complete(p.toString)

}

val route =

1.7. spray-routing 149

spray, Release $VERSION$

pathSuffixTest(Slash) {
complete("slashed")

} ~
complete("unslashed")

Get("/foo/") ~> route ~> check {
responseAs[String] === "slashed"

}
Get("/foo") ~> route ~> check {

responseAs[String] === "unslashed"
}

rawPathPrefix

Matches and consumes a prefix of the unmatched path of the RequestContext against the given PathMatcher,
potentially extracts one or more values (depending on the type of the argument).

Signature

def rawPathPrefix[L <: HList](pm: PathMatcher[L]): Directive[L]

Description

This directive filters incoming requests based on the part of their URI that hasn’t been matched yet by other potentially
existing rawPathPrefix or pathPrefix directives on higher levels of the routing structure. Its one parameter is
usually an expression evaluating to a PathMatcher instance (see also: The PathMatcher DSL).

As opposed to its pathPrefix counterpart rawPathPrefix does not automatically add a leading slash to its
PathMatcher argument. Rather its PathMatcher argument is applied to the unmatched path as is.

Depending on the type of its PathMatcher argument the rawPathPrefix directive extracts zero or more values
from the URI. If the match fails the request is rejected with an empty rejection set.

Example

val completeWithUnmatchedPath =
unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefix("foo") {
rawPathPrefix("bar") { completeWithUnmatchedPath } ~
rawPathPrefix("doo") { completeWithUnmatchedPath }

}

Get("/foobar/baz") ~> route ~> check {
responseAs[String] === "/baz"

}

Get("/foodoo/baz") ~> route ~> check {

150 Chapter 1. Documentation

spray, Release $VERSION$

responseAs[String] === "/baz"
}

rawPathPrefixTest

Checks whether the unmatched path of the RequestContext has a prefix matched by the given PathMatcher.
Potentially extracts one or more values (depending on the type of the argument) but doesn’t consume its match from
the unmatched path.

Signature

def rawPathPrefixTest[L <: HList](pm: PathMatcher[L]): Directive[L]

Description

This directive is very similar to the pathPrefix directive with the one difference that the path prefix it matched (if it
matched) is not consumed. The unmatched path of the RequestContext is therefore left as is even in the case that
the directive successfully matched and the request is passed on to its inner route.

For more info on how to create a PathMatcher see The PathMatcher DSL.

As opposed to its pathPrefixTest counterpart rawPathPrefixTest does not automatically add a leading slash to
its PathMatcher argument. Rather its PathMatcher argument is applied to the unmatched path as is.

Depending on the type of its PathMatcher argument the rawPathPrefixTest directive extracts zero or more
values from the URI. If the match fails the request is rejected with an empty rejection set.

Example

val completeWithUnmatchedPath =
unmatchedPath { p =>
complete(p.toString)

}

val route =
pathPrefix("foo") {
rawPathPrefixTest("bar") {

completeWithUnmatchedPath
}

}

Get("/foobar") ~> route ~> check {
responseAs[String] === "bar"

}

Get("/foobaz") ~> route ~> check {
handled === false

}

1.7. spray-routing 151

spray, Release $VERSION$

The PathMatcher DSL

For being able to work with the PathDirectives effectively you should have some understanding of the PathMatcher
mini-DSL that spray-routing provides for elegantly defining URI matching behavior.

Overview

When a request (or rather the respective RequestContext instance) enters the route structure it has an “unmatched
path” that is identical to the request.uri.path. As it descends the routing tree and passes through one or more
pathPrefix/path directives the “unmatched path” progressively gets “eaten into” from the left until, in most cases, it
eventually has been consumed completely.

What exactly gets matched and consumed as well as extracted from the unmatched path in each directive is defined
with the patch matching DSL, which is built around these types:

trait PathMatcher[L <: HList]
type PathMatcher0 = PathMatcher[HNil]
type PathMatcher1[T] = PathMatcher[T :: HNil]

The number and types of the values extracted by a PathMatcher instance is represented by the L <: HList
type parameter. The convenience alias PathMatcher0 can be used for all matchers which don’t extract anything
while PathMatcher1[T] defines a matcher which only extracts a single value of type T.

Here is an example of a more complex PathMatcher expression:

val matcher: PathMatcher1[Option[Int]] =
"foo" / "bar" / "X" ~ IntNumber.? / ("edit" | "create")

This will match paths like foo/bar/X42/edit or foo/bar/X/create.

Note: The path matching DSL describes what paths to accept after URL decoding. This is why the path-separating
slashes have special status and cannot simply be specified as part of a string! The string “foo/bar” would match the
raw URI path “foo%2Fbar”, which is most likely not what you want!

Basic PathMatchers

A complex PathMatcher can be constructed by combining or modifying more basic ones. Here are the basic
matchers that spray-routing already provides for you:

String You can use a String instance as a PathMatcher0. Strings simply match themselves and extract no
value. Note that strings are interpreted as the decoded representation of the path, so if they include a ‘/’ character
this character will match “%2F” in the encoded raw URI!

Regex You can use a Regex instance as a PathMatcher1[String], which matches whatever the regex matches
and extracts one String value. A PathMatcher created from a regular expression extracts either the com-
plete match (if the regex doesn’t contain a capture group) or the capture group (if the regex contains exactly one
capture group). If the regex contains more than one capture group an IllegalArgumentException will
be thrown.

Map[String, T] You can use a Map[String, T] instance as a PathMatcher1[T], which matches any of
the keys and extracts the respective map value for it.

Slash: PathMatcher0 Matches exactly one path-separating slash (/) character and extracts nothing.

152 Chapter 1. Documentation

spray, Release $VERSION$

Segment: PathMatcher1[String] Matches if the unmatched path starts with a path segment (i.e. not a
slash). If so the path segment is extracted as a String instance.

PathEnd: PathMatcher0 Matches the very end of the path, similar to $ in regular expressions and extracts
nothing.

Rest: PathMatcher1[String] Matches and extracts the complete remaining unmatched part of the re-
quest’s URI path as an (encoded!) String. If you need access to the remaining decoded elements of the path use
RestPath instead.

RestPath: PathMatcher1[Path] Matches and extracts the complete remaining, unmatched part of the re-
quest’s URI path.

IntNumber: PathMatcher1[Int] Efficiently matches a number of decimal digits and extracts their (non-
negative) Int value. The matcher will not match zero digits or a sequence of digits that would represent an
Int value larger than Int.MaxValue.

LongNumber: PathMatcher1[Long] Efficiently matches a number of decimal digits and extracts their (non-
negative) Long value. The matcher will not match zero digits or a sequence of digits that would represent an
Long value larger than Long.MaxValue.

HexIntNumber: PathMatcher1[Int] Efficiently matches a number of hex digits and extracts their (non-
negative) Int value. The matcher will not match zero digits or a sequence of digits that would represent an
Int value larger than Int.MaxValue.

HexLongNumber: PathMatcher1[Long] Efficiently matches a number of hex digits and extracts their (non-
negative) Long value. The matcher will not match zero digits or a sequence of digits that would represent an
Long value larger than Long.MaxValue.

DoubleNumber: PathMatcher1[Double] Matches and extracts a Double value. The matched string rep-
resentation is the pure decimal, optionally signed form of a double value, i.e. without exponent.

JavaUUID: PathMatcher1[UUID] Matches and extracts a java.util.UUID instance.

Neutral: PathMatcher0 A matcher that always matches, doesn’t consume anything and extracts nothing.
Serves mainly as a neutral element in PathMatcher composition.

Segments: PathMatcher1[List[String]] Matches all remaining segments as a list of strings. Note that
this can also be “no segments” resulting in the empty list. If the path has a trailing slash this slash will not be
matched, i.e. remain unmatched and to be consumed by potentially nested directives.

separateOnSlashes(string: String): PathMatcher0 Converts a path string containing slashes
into a PathMatcher0 that interprets slashes as path segment separators. This means that a matcher matching
“%2F” cannot be constructed with this helper.

provide[L <: HList](extractions: L): PathMatcher[L] Always matches, consumes nothing
and extracts the given HList of values.

PathMatcher[L <: HList](prefix: Path, extractions: L): PathMatcher[L]
Matches and consumes the given path prefix and extracts the given list of extractions. If the given pre-
fix is empty the returned matcher matches always and consumes nothing.

Combinators

Path matchers can be combined with these combinators to form higher-level constructs:

Tilde Operator (~) The tilde is the most basic combinator. It simply concatenates two matchers into one, i.e if the
first one matched (and consumed) the second one is tried. The extractions of both matchers are combined
type-safely. For example: "foo" ~ "bar" yields a matcher that is identical to "foobar".

1.7. spray-routing 153

spray, Release $VERSION$

Slash Operator (/) This operator concatenates two matchers and inserts a Slash matcher in between them. For
example: "foo" / "bar" is identical to "foo" ~ Slash ~ "bar".

Pipe Operator (|) This operator combines two matcher alternatives in that the second one is only tried if the first one
did not match. The two sub-matchers must have compatible types. For example: "foo" | "bar" will match
either “foo” or “bar”.

Modifiers

Path matcher instances can be transformed with these modifier methods:

/ The slash operator cannot only be used as combinator for combining two matcher instances, it can also be used as
a postfix call. matcher / is identical to matcher ~ Slash but shorter and easier to read.

? By postfixing a matcher with ? you can turn any PathMatcher into one that always matches, optionally consumes
and potentially extracts an Option of the underlying matchers extraction. The result type depends on the type
of the underlying matcher:

If a matcher is of type then matcher.? is of type
PathMatcher0 PathMatcher0
PathMatcher1[T] PathMatcher1[Option[T]
PathMatcher[L <: HList] PathMatcher[Option[L]]

repeat(separator: PathMatcher0 = PathMatchers.Neutral) By postfixing a matcher with
repeat(separator) you can turn any PathMatcher into one that always matches, consumes zero or
more times (with the given separator) and potentially extracts a List of the underlying matcher’s extractions.
The result type depends on the type of the underlying matcher:

If a matcher is of type then matcher.repeat(...) is of type
PathMatcher0 PathMatcher0
PathMatcher1[T] PathMatcher1[List[T]
PathMatcher[L <: HList] PathMatcher[List[L]]

unary_! By prefixing a matcher with ! it can be turned into a PathMatcher0 that only matches if the underlying
matcher does not match and vice versa.

transform / (h)flatMap / (h)map These modifiers allow you to append your own “post-application” logic to
another matcher in order to form a custom one. You can map over the extraction(s), turn mismatches into
matches or vice-versa or do anything else with the results of the underlying matcher. Take a look at the method
signatures and implementations for more guidance as to how to use them.

Examples

// matches /foo/
path("foo" /)

// matches e.g. /foo/123 and extracts "123" as a String
path("foo" / """\d+""".r)

// matches e.g. /foo/bar123 and extracts "123" as a String
path("foo" / """bar(\d+)""".r)

// identical to `path(Segments)`
path(Segment.repeat(separator = Slash))

// matches e.g. /i42 or /hCAFE and extracts an Int

154 Chapter 1. Documentation

spray, Release $VERSION$

path("i" ~ IntNumber | "h" ~ HexIntNumber)

// identical to path("foo" ~ (PathEnd | Slash))
path("foo" ~ Slash.?)

// matches /red or /green or /blue and extracts 1, 2 or 3 respectively
path(Map("red" -> 1, "green" -> 2, "blue" -> 3))

// matches anything starting with "/foo" except for /foobar
pathPrefix("foo" ~ !"bar")

RangeDirectives

withRangeSupport

Transforms the response from its inner route into a 206 Partial Content response if the client requested only
part of the resource with a Range header.

Signature

def withRangeSupport(): Directive0
def withRangeSupport(rangeCountLimit: Int, rangeCoalescingThreshold:Long): Directive0

The signature shown is simplified, the real signature uses magnets.1

Description

Augments responses to GET requests with an Accept-Ranges: bytes header and converts them into partial
responses if the request contains a valid Range request header. The requested byte-ranges are coalesced (merged) if
they lie closer together than the specified rangeCoalescingThreshold argument.

In order to prevent the server from becoming overloaded with trying to prepare multipart/byteranges re-
sponses for high numbers of potentially very small ranges the directive rejects requests requesting more than
rangeCountLimit ranges with a TooManyRangesRejection. Requests with unsatisfiable ranges are rejected
with an UnsatisfiableRangeRejection.

The withRangeSupport() form (without parameters) uses the range-coalescing-threshold and
range-count-limit settings from the spray.routing configuration.

This directive is transparent to non-GET requests.

See also: https://tools.ietf.org/html/draft-ietf-httpbis-p5-range/

Example

val route =
withRangeSupport(4, 2L) {
complete("ABCDEFGH")

}

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 155

https://tools.ietf.org/html/draft-ietf-httpbis-p5-range/

spray, Release $VERSION$

Get() ~> addHeader(Range(ByteRange(3, 4))) ~> route ~> check {
headers must contain(`Content-Range`(ContentRange(3, 4, 8)))
status === StatusCodes.PartialContent
responseAs[String] === "DE"

}

Get() ~> addHeader(Range(ByteRange(0, 1), ByteRange(1, 2), ByteRange(6, 7))) ~> route
→˓~> check {
headers must not(contain(like[HttpHeader] { case `Content-Range`(_, _) ok }))
responseAs[MultipartByteRanges] must beLike {
case MultipartByteRanges(
BodyPart(entity1, `Content-Range`(RangeUnit.Bytes, range1) +: _) +:
BodyPart(entity2, `Content-Range`(RangeUnit.Bytes, range2) +: _) +: Seq()

) entity1.asString === "ABC" and range1 === ContentRange(0, 2, 8) and
entity2.asString === "GH" and range2 === ContentRange(6, 7, 8)

}
}

RespondWithDirectives

respondWithHeader

Adds a given HTTP header to all responses coming back from its inner route.

Signature

def respondWithHeader(responseHeader: HttpHeader): Directive0

Description

This directive transforms HttpResponse and ChunkedResponseStart messages coming back from its inner
route by adding the given HttpHeader instance to the headers list. If you’d like to add more than one header you
can use the respondWithHeaders directive instead.

Example

val route =
path("foo") {
respondWithHeader(RawHeader("Funky-Muppet", "gonzo")) {
complete("beep")

}
}

Get("/foo") ~> route ~> check {
header("Funky-Muppet") === Some(RawHeader("Funky-Muppet", "gonzo"))
responseAs[String] === "beep"

}

156 Chapter 1. Documentation

spray, Release $VERSION$

respondWithHeaders

Adds the given HTTP headers to all responses coming back from its inner route.

Signature

def respondWithHeaders(responseHeaders: HttpHeader*): Directive0
def respondWithHeaders(responseHeaders: List[HttpHeader]): Directive0

Description

This directive transforms HttpResponse and ChunkedResponseStart messages coming back from its inner
route by adding the given HttpHeader instances to the headers list. If you’d like to add just a single header you can
use the respondWithHeader directive instead.

Example

val route =
path("foo") {
respondWithHeaders(RawHeader("Funky-Muppet", "gonzo"), Origin(Seq(HttpOrigin(

→˓"http://spray.io")))) {
complete("beep")

}
}

Get("/foo") ~> route ~> check {
header("Funky-Muppet") === Some(RawHeader("Funky-Muppet", "gonzo"))
header[Origin] === Some(Origin(Seq(HttpOrigin("http://spray.io"))))
responseAs[String] === "beep"

}

respondWithMediaType

Overrides the media-type of the response returned by its inner route with the given one.

Signature

def respondWithMediaType(mediaType: MediaType): Directive0

Description

This directive transforms HttpResponse and ChunkedResponseStart messages coming back from its inner
route by overriding the entity.contentType.mediaType with the given one if the entity is non-empty. Empty
response entities are left unchanged.

If the given media-type is not accepted by the client the request is rejected with an
UnacceptedResponseContentTypeRejection.

1.7. spray-routing 157

spray, Release $VERSION$

Note: This directive removes a potentially existing Accept header from the request, in order to “disable” content
negotiation in a potentially running Marshaller in its inner route. Also note that this directive does not change the
response entity buffer content in any way, it merely overrides the media-type component of the entities Content-Type.

Example

import MediaTypes._

val route =
path("foo") {
respondWithMediaType(`application/json`) {

complete("[]") // marshalled to `text/plain` here
}

}

Get("/foo") ~> route ~> check {
mediaType === `application/json`
responseAs[String] === "[]"

}

Get("/foo") ~> Accept(MediaRanges.`text/*`) ~> route ~> check {
rejection === UnacceptedResponseContentTypeRejection(ContentType(`application/

→˓json`) :: Nil)
}

respondWithSingletonHeader

Adds a given HTTP header to all responses coming back from its inner route only if a header with the same name
doesn’t exist yet in the response.

Signature

def respondWithSingletonHeader(responseHeader: HttpHeader): Directive0

Description

This directive transforms HttpResponse and ChunkedResponseStart messages coming back from its inner
route by potentially adding the given HttpHeader instance to the headers list. The header is only added if there is
no header instance with the same name (case insensitively) already present in the response. If you’d like to add more
than one header you can use the respondWithSingletonHeaders directive instead.

Example

val respondWithMuppetHeader =
respondWithSingletonHeader(RawHeader("Funky-Muppet", "gonzo"))

val route =

158 Chapter 1. Documentation

spray, Release $VERSION$

path("foo") {
respondWithMuppetHeader {

complete("beep")
}

} ~
path("bar") {
respondWithMuppetHeader {

respondWithHeader(RawHeader("Funky-Muppet", "kermit")) {
complete("beep")

}
}

}

Get("/foo") ~> route ~> check {
headers.filter(_.is("funky-muppet")) === List(RawHeader("Funky-Muppet", "gonzo"))
responseAs[String] === "beep"

}

Get("/bar") ~> route ~> check {
headers.filter(_.is("funky-muppet")) === List(RawHeader("Funky-Muppet", "kermit"))
responseAs[String] === "beep"

}

respondWithSingletonHeaders

Adds the given HTTP headers to all responses coming back from its inner route only if a respective header with the
same name doesn’t exist yet in the response.

Signature

def respondWithSingletonHeaders(responseHeaders: HttpHeader*): Directive0
def respondWithSingletonHeaders(responseHeaders: List[HttpHeader]): Directive0

Description

This directive transforms HttpResponse and ChunkedResponseStart messages coming back from its inner
route by potentially adding the given HttpHeader instances to the headers list. A header is only added if there is
no header instance with the same name (case insensitively) already present in the response. If you’d like to add only a
single header you can use the respondWithSingletonHeader directive instead.

Example

See the respondWithSingletonHeader directive for an example with only one header.

respondWithStatus

Overrides the status code of all responses coming back from its inner route with the given one.

1.7. spray-routing 159

spray, Release $VERSION$

Signature

def respondWithStatus(responseStatus: StatusCode): Directive0

Description

This directive transforms HttpResponse and ChunkedResponseStart messages coming back from its inner
route by unconditionally overriding the status code with the given one.

Example

val route =
path("foo") {
respondWithStatus(201) {

complete("beep")
}

}

Get("/foo") ~> route ~> check {
status === StatusCodes.Created
responseAs[String] === "beep"

}

RouteDirectives

The RouteDirectives have a special role in spray’s routing DSL. Contrary to all other directives (except most
FileAndResourceDirectives) they do not produce instances of type Directive[L <: HList] but rather “plain”
routes of type Route. The reason is that the RouteDirectives are not meant for wrapping an inner route (like
most other directives, as intermediate-level elements of a route structure, do) but rather form the actual route structure
leaves.

So in most cases the inner-most element of a route structure branch is one of the RouteDirectives (or FileAn-
dResourceDirectives):

complete

Completes the request using the given argument(s).

Signature

def complete[T :ToResponseMarshaller](value: T): StandardRoute
def complete(response: HttpResponse): StandardRoute
def complete(status: StatusCode): StandardRoute
def complete[T :Marshaller](status: StatusCode, value: T): StandardRoute
def complete[T :Marshaller](status: Int, value: T): StandardRoute
def complete[T :Marshaller](status: StatusCode, headers: Seq[HttpHeader], value: T):
→˓StandardRoute
def complete[T :Marshaller](status: Int, headers: Seq[HttpHeader], value: T):
→˓StandardRoute

160 Chapter 1. Documentation

spray, Release $VERSION$

The signature shown is simplified, the real signature uses magnets.1

Description

complete uses the given arguments to construct a Route which simply calls requestContext.complete
with the respective HttpResponse instance. Completing the request will send the response “back up” the route
structure where all logic that wrapping directives have potentially chained into the responder chain is run (see also The
Responder Chain). Once the response hits the top-level runRoute logic it is sent back to the underlying spray-can
or spray-servlet layer which will trigger the sending of the actual HTTP response message back to the client.

Example

val route =
path("a") {
complete(HttpResponse(entity = "foo"))

} ~
path("b") {
complete(StatusCodes.Created, "bar")

} ~
(path("c") & complete("baz")) // `&` also works with `complete` as the 2nd argument

Get("/a") ~> route ~> check {
status === StatusCodes.OK
responseAs[String] === "foo"

}

Get("/b") ~> route ~> check {
status === StatusCodes.Created
responseAs[String] === "bar"

}

Get("/c") ~> route ~> check {
status === StatusCodes.OK
responseAs[String] === "baz"

}

failWith

Bubbles up the given error through the route structure where it is dealt with by the closest handleExceptions
directive and its ExceptionHandler.

Signature

def failWith(error: Throwable): StandardRoute

Description

failWith explicitly raises an exception that gets bubbled up through the route structure to be picked up by the

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 161

spray, Release $VERSION$

nearest handleExceptions directive. If no handleExceptions is present above the respective location in the
route structure The runRoute Wrapper will handle the exception and translate it into a corresponding HttpResponse
using the in-scope ExceptionHandler (see also the Exception Handling chapter).

There is one notable special case: If the given exception is a RejectionError exception it is not bubbled up, but
rather the wrapped exception is unpacked and “executed”. This allows the “tunneling” of a rejection via an exception.

Example

val route =
path("foo") {
failWith(new RequestProcessingException(StatusCodes.BandwidthLimitExceeded))

}

Get("/foo") ~> sealRoute(route) ~> check {
status === StatusCodes.BandwidthLimitExceeded
responseAs[String] === "Bandwidth limit has been exceeded."

}

redirect

Completes the request with a redirection response to a given targer URI and of a given redirection type (status code).

Signature

def redirect(uri: Uri, redirectionType: Redirection): StandardRoute

Description

redirect is a convenience helper for completing the request with a redirection response. It is equivalent to this
snippet relying on the complete directive:

complete {
HttpResponse(
status = redirectionType,
headers = Location(uri) :: Nil,
entity = redirectionType.htmlTemplate match {
case "" HttpEntity.Empty
case template HttpEntity(`text/html`, template format uri)

})
}

Example

val route =
pathPrefix("foo") {
pathSingleSlash {

complete("yes")
} ~

162 Chapter 1. Documentation

spray, Release $VERSION$

pathEnd {
redirect("/foo/", StatusCodes.PermanentRedirect)

}
}

Get("/foo/") ~> route ~> check {
responseAs[String] === "yes"

}

Get("/foo") ~> route ~> check {
status === StatusCodes.PermanentRedirect
responseAs[String] === """The request, and all future requests should be repeated

→˓using this URI."""
}

reject

Explicitly rejects the request optionally using the given rejection(s).

Signature

def reject: StandardRoute
def reject(rejections: Rejection*): StandardRoute

Description

reject uses the given rejection instances (which might be the empty Seq) to construct a Route which simply calls
requestContext.reject. See the chapter on Rejections for more information on what this means.

After the request has been rejected at the respective point it will continue to flow through the routing structure in the
search for a route that is able to complete it.

The explicit reject directive is used mostly when building Custom Directives, e.g. inside of a flatMap modifier
for “filtering out” certain cases.

Example

val route =
path("a") {
reject // don't handle here, continue on

} ~
path("a") {
complete("foo")

} ~
path("b") {
// trigger a ValidationRejection explicitly
// rather than through the `validate` directive
reject(ValidationRejection("Restricted!"))

}

Get("/a") ~> route ~> check {

1.7. spray-routing 163

spray, Release $VERSION$

responseAs[String] === "foo"
}

Get("/b") ~> route ~> check {
rejection === ValidationRejection("Restricted!")

}

SchemeDirectives

Scheme directives can be used to extract the Uri scheme (i.e. “http”, “https”, etc.) from requests or to reject any
request that does not match a specified scheme name.

scheme

Rejects a request if its Uri scheme does not match a given one.

Signature

def scheme(schm: String): Directive0

Description

The scheme directive can be used to match requests by their Uri scheme, only passing through requests that match
the specified scheme and rejecting all others.

A typical use case for the scheme directive would be to reject requests coming in over http instead of https, or to
redirect such requests to the matching https URI with a MovedPermanently.

For simply extracting the scheme name, see the schemeName directive.

Example

val route =
scheme("http") {
extract(_.request.uri) { uri

redirect(uri.copy(scheme = "https"), MovedPermanently)
}

} ~
scheme("https") {
complete(s"Safe and secure!")

}

Get("http://www.example.com/hello") ~> route ~> check {
status === MovedPermanently
header[Location] === Some(Location(Uri("https://www.example.com/hello")))

}

Get("https://www.example.com/hello") ~> route ~> check {
responseAs[String] === "Safe and secure!"

}

164 Chapter 1. Documentation

spray, Release $VERSION$

schemeName

Extracts the value of the request Uri scheme.

Signature

def schemeName: Directive1[String]

Description

The schemeName directive can be used to determine the Uri scheme (i.e. “http”, “https”, etc.) for an incoming
request.

For rejecting a request if it doesn’t match a specified scheme name, see the scheme directive.

Example

val route =
schemeName { scheme =>
complete(s"The scheme is '${scheme}'")

}

Get("https://www.example.com/") ~> route ~> check {
responseAs[String] === "The scheme is 'https'"

}

SecurityDirectives

authenticate

Authenticates a request by checking credentials supplied in the request and extracts a value representing the authenti-
cated principal.

Signature

def authenticate[T](auth: Future[Authentication[T]])(implicit executor:
→˓ExecutionContext): Directive1[T]
def authenticate[T](auth: ContextAuthenticator[T])(implicit executor:
→˓ExecutionContext): Directive1[T]

The signature shown is simplified, the real signature uses magnets.1

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 165

spray, Release $VERSION$

Description

On the lowest level, authenticate, takes either a Future[Authentication[T]] which authenticates
based on values from the lexical scope or a value of type ContextAuthenticator[T] = RequestContext
Future[Authentication[T]] which extracts authentication data from the RequestContext. The returned
value of type Authentication[T] must either be the authenticated principal which will be supplied to the inner
route or a rejection to reject the request with if authentication failed .

Both variants return futures so that the actual authentication procedure runs detached from route processing and pro-
cessing of the inner route will be continued once the authentication finished. This allows longer-running authentication
tasks (like looking up credentials in a database) to run without blocking the HttpService actor, freeing it for other
requests. The authenticate directive itself isn’t tied to any HTTP-specific details so that various authentication
schemes can be implemented on top of authenticate.

Standard HTTP-based authentication which uses the WWW-Authenticate header containing challenge data and
Authorization header for receiving credentials is implemented in subclasses of HttpAuthenticator.

HTTP Basic Authentication

spray supports HTTP basic authentication through the BasicHttpAuthenticator and provides a series of con-
venience constructors for different scenarios with BasicAuth(). Make sure to use basic authentication only over
SSL because credentials are transferred in plaintext.

Implementing a UserPassAuthenticator

The most generic way of deploying HTTP basic authentication uses a UserPassAuthenticator to validate a
user/password combination. It is defined like this:

type UserPassAuthenticator[T] = Option[UserPass] Future[Option[T]]

Its job is to map a user/password combination (if existent in the request) to an authenticated custom principal of type
T (if authenticated).

def myUserPassAuthenticator(userPass: Option[UserPass]): Future[Option[String]] =
Future {
if (userPass.exists(up => up.user == "John" && up.pass == "p4ssw0rd")) Some("John

→˓")
else None

}

val route =
sealRoute {
path("secured") {

authenticate(BasicAuth(myUserPassAuthenticator _, realm = "secure site")) {
→˓userName =>

complete(s"The user is '$userName'")
}

}
}

Get("/secured") ~> route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The resource requires authentication, which was not

→˓supplied with the request"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge("Basic

→˓", "secure site")

166 Chapter 1. Documentation

http://en.wikipedia.org/wiki/Basic_auth

spray, Release $VERSION$

}

val validCredentials = BasicHttpCredentials("John", "p4ssw0rd")
Get("/secured") ~>

addCredentials(validCredentials) ~> // adds Authorization header
route ~> check {
responseAs[String] === "The user is 'John'"

}

val invalidCredentials = BasicHttpCredentials("Peter", "pan")
Get("/secured") ~>

addCredentials(invalidCredentials) ~> // adds Authorization header
route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The supplied authentication is invalid"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge(

→˓"Basic", "secure site")
}

From configuration

There are several overloads to configure users from the configuration file. Obviously, this is neither a secure (plaintext
passwords) nor a scalable approach. If you don’t pass in a custom config users are configured from the Configuration
path spray.routing.users.

def extractUser(userPass: UserPass): String = userPass.user
val config = ConfigFactory.parseString("John = p4ssw0rd")

val route =
sealRoute {
path("secured") {

authenticate(BasicAuth(realm = "secure site", config = config, createUser =
→˓extractUser _)) { userName =>

complete(s"The user is '$userName'")
}

}
}

Get("/secured") ~> route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The resource requires authentication, which was not

→˓supplied with the request"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge("Basic

→˓", "secure site")
}

val validCredentials = BasicHttpCredentials("John", "p4ssw0rd")
Get("/secured") ~>

addCredentials(validCredentials) ~> // adds Authorization header
route ~> check {
responseAs[String] === "The user is 'John'"

}

val invalidCredentials = BasicHttpCredentials("Peter", "pan")
Get("/secured") ~>

addCredentials(invalidCredentials) ~> // adds Authorization header

1.7. spray-routing 167

spray, Release $VERSION$

route ~> check {
status === StatusCodes.Unauthorized
responseAs[String] === "The supplied authentication is invalid"
header[HttpHeaders.`WWW-Authenticate`].get.challenges.head === HttpChallenge(

→˓"Basic", "secure site")
}

From LDAP

(todo)

authorize

Guards access to the inner route with a user-defined check.

Signature

def authorize(check: Boolean): Directive0
def authorize(check: RequestContext Boolean): Directive0

Description

The user-defined authorization check can either be supplied as a Boolean value which is calculated just from in-
formation out of the lexical scope, or as a function RequestContext Boolean which can also take information
from the request itself into account. If the check returns true the request is passed on to the inner route unchanged,
otherwise an AuthorizationFailedRejection is created, triggering a 403 Forbidden response by default
(the same as in the case of an AuthenticationFailedRejection).

In a common use-case you would check if a user (e.g. supplied by the authenticate directive) is allowed to access the
inner routes, e.g. by checking if the user has the needed permissions.

Example

def extractUser(userPass: UserPass): String = userPass.user
val config = ConfigFactory.parseString("John = p4ssw0rd\nPeter = pan")
def hasPermissionToPetersLair(userName: String) = userName == "Peter"

val route =
sealRoute {
authenticate(BasicAuth(realm = "secure site", config = config, createUser =

→˓extractUser _)) { userName =>
path("peters-lair") {

authorize(hasPermissionToPetersLair(userName)) {
complete(s"'$userName' visited Peter's lair")

}
}

}
}

168 Chapter 1. Documentation

spray, Release $VERSION$

val johnsCred = BasicHttpCredentials("John", "p4ssw0rd")
Get("/peters-lair") ~>

addCredentials(johnsCred) ~> // adds Authorization header
route ~> check {
status === StatusCodes.Forbidden
responseAs[String] === "The supplied authentication is not authorized to access

→˓this resource"
}

val petersCred = BasicHttpCredentials("Peter", "pan")
Get("/peters-lair") ~>

addCredentials(petersCred) ~> // adds Authorization header
route ~> check {
responseAs[String] === "'Peter' visited Peter's lair"

}

optionalAuthenticate

Authenticates a request by checking credentials supplied in the request and extracts a value representing the authenti-
cated principal, or None if no credentials were supplied.

Signature

def optionalAuthenticate[T](auth: Future[Authentication[T]])(implicit executor:
→˓ExecutionContext): Directive1[Option[T]]
def optionalAuthenticate[T](auth: ContextAuthenticator[T])(implicit executor:
→˓ExecutionContext): Directive1[Option[T]]

The signature shown is simplified, the real signature uses magnets.1

Description

The optionalAuthenticate directive is similar to the authenticate directive but always extracts an
Option value instead of rejecting the request if no credentials could be found.

Authentication vs. Authorization

Authentication is the process of establishing a known identity for the user, whereby ‘identity’ is defined in the context
of the application. This may be done with a username/password combination, a cookie, a pre-defined IP or some other
mechanism. After authentication the system believes that it knows who the user is.

Authorization is the process of determining, whether a given user is allowed access to a given resource or not. In
most cases, in order to be able to authorize a user (i.e. allow access to some part of the system) the users identity must
already have been established, i.e. he/she must have been authenticated. Without prior authentication the authorization
would have to be very crude, e.g. “allow access for all users” or “allow access for noone”. Only after authentication
will it be possible to, e.g., “allow access to the statistics resource for _admins_, but not for regular members”.

Authentication and authorization may happen at the same time, e.g. when everyone who can properly be authenticated
is also allowed access (which is often a very simple and somewhat implicit authorization logic). In other cases the

1 See The Magnet Pattern for an explanation of magnet-based overloading.

1.7. spray-routing 169

spray, Release $VERSION$

system might have one mechanism for authentication (e.g. establishing user identity via an LDAP lookup) and another
one for authorization (e.g. a database lookup for retrieving user access rights).

Complete Examples

The /examples/spray-routing/ directory of the spray repository contains a number of example projects for spray-
routing, which are described here.

on-spray-can

This examples demonstrates how to run spray-routing on top of the spray-can HTTP Server. It implements a very
simple web-site and shows off various features like streaming, stats support and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project on-spray-can" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project on-spray-can and run sequentially “inside” of SBT.)

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

curl -v 127.0.0.1:8080/stop

on-jetty

This examples demonstrates how to run spray-routing on top of spray-servlet. It implements a very simple web-site
and shows off various features like streaming, stats support and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

170 Chapter 1. Documentation

https://github.com/spray/spray/tree/release/1.2/examples/spray-routing
http://127.0.0.1:8080/

spray, Release $VERSION$

sbt "project on-jetty" container:start shell

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

container:stop

simple-routing-app

This examples demonstrates how to use the SimpleRoutingApp trait.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-routing-app" run

(If this doesn’t work for you your SBT runner cannot deal with grouped arguments. In this case you’ll have to
run the commands project simple-routing-app and run sequentially “inside” of SBT.)

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

curl -v 127.0.0.1:8080/stop

Minimal Example

This is a complete, very basic spray-routing application:

import spray.routing.SimpleRoutingApp

object Main extends App with SimpleRoutingApp {
implicit val system = ActorSystem("my-system")

startServer(interface = "localhost", port = 8080) {
path("hello") {

get {
complete {

1.7. spray-routing 171

http://127.0.0.1:8080/
http://127.0.0.1:8080/

spray, Release $VERSION$

<h1>Say hello to spray</h1>
}

}
}

}
}

It starts a spray-can HTTP Server on localhost and replies to GET requests to /hello with a simple response.

Longer Example

The following is a spray-routing route definition that tries to show off a few features. The resulting service does not
really do anything useful but its definition should give you a feel for what an actual API definition with spray-routing
will look like:

import scala.concurrent.duration.Duration
import spray.routing.HttpService
import spray.routing.authentication.BasicAuth
import spray.routing.directives.CachingDirectives._
import spray.httpx.encoding._

trait LongerService extends HttpService with MyApp {

val simpleCache = routeCache(maxCapacity = 1000, timeToIdle = Duration("30 min"))

val route = {
path("orders") {

authenticate(BasicAuth(realm = "admin area")) { user =>
get {
cache(simpleCache) {
encodeResponse(Deflate) {
complete {
// marshal custom object with in-scope marshaller
getOrdersFromDB

}
}

}
} ~
post {
// decompresses the request with Gzip or Deflate when required
decompressRequest() {

// unmarshal with in-scope unmarshaller
entity(as[Order]) { order =>

// transfer to newly spawned actor
detach() {
complete {
// ... write order to DB
"Order received"

}
}

}
}

}
}

} ~
// extract URI path element as Int

172 Chapter 1. Documentation

spray, Release $VERSION$

pathPrefix("order" / IntNumber) { orderId =>
pathEnd {

// method tunneling via query param
(put | parameter('method ! "put")) {
// form extraction from multipart or www-url-encoded forms
formFields('email, 'total.as[Money]).as(Order) { order =>
complete {
// complete with serialized Future result
(myDbActor ? Update(order)).mapTo[TransactionResult]

}
}

} ~
get {
// JSONP support
jsonpWithParameter("callback") {

// use in-scope marshaller to create completer function
produce(instanceOf[Order]) { completer => ctx =>
processOrderRequest(orderId, completer)

}
}

}
} ~
path("items") {

get {
// parameters to case class extraction
parameters('size.as[Int], 'color ?, 'dangerous ? "no")

.as(OrderItem) { orderItem =>
// ... route using case class instance created from
// required and optional query parameters

}
}

}
} ~
pathPrefix("documentation") {

// cache responses to GET requests
cache(simpleCache) {

// optionally compresses the response with Gzip or Deflate
// if the client accepts compressed responses
compressResponse() {
// serve up static content from a JAR resource
getFromResourceDirectory("docs")

}
}

} ~
path("oldApi" / Rest) { pathRest =>

redirect("http://oldapi.example.com/" + pathRest, StatusCodes.MovedPermanently)
}

}
}

spray-servlet

spray-servlet is an adapter layer providing (a subset of) the spray-can HTTP Server interface on top of the Servlet
API. As one main application it enables the use of spray-routing in a servlet container.

1.8. spray-servlet 173

spray, Release $VERSION$

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-servlet depends on

• spray-http

• spray-util

• spray-io (only required until the upgrade to Akka 2.2, will go away afterwards)

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• the Servlet-3.0 API (with ‘provided’ scope, usually automatically available from your servlet container)

Installation

The Maven Repository chapter contains all the info about how to pull spray-servlet into your classpath. You might
also want to check out:

• The xsbt-web-plugin for simplifying the development process

• The Getting Started chapter for info on the spray project template for spray-servlet

Configuration

Just like Akka spray-servlet relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf, in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-servlet module:

#######################################
spray-servlet Reference Config File
#######################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

spray.servlet {

The FQN (Fully Qualified Name) of the class to load when the
servlet context is initialized (e.g. "com.example.ApiBoot").
The class must have a constructor with a single
`javax.servlet.ServletContext` parameter and implement
the `spray.servlet.WebBoot` trait.
boot-class = ""

If a request hasn't been responded to after the time period set here
a `spray.http.Timedout` message will be sent to the timeout handler.
Set to `infinite` to completely disable request timeouts.
request-timeout = 30 s

After a `Timedout` message has been sent to the timeout handler and the
request still hasn't been completed after the time period set here

174 Chapter 1. Documentation

https://github.com/JamesEarlDouglas/xsbt-web-plugin
https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html

spray, Release $VERSION$

the server will complete the request itself with an error response.
Set to `infinite` to disable timeout timeouts.
timeout-timeout = 500 ms

The path of the actor to send `spray.http.Timedout` messages to.
If empty all `Timedout` messages will go to the "regular" request handling

→˓actor.
timeout-handler = ""

A path prefix that is automatically "consumed" before the request is
being dispatched to the HTTP service route.
Can be used to match servlet context paths configured for the application.
Make sure to include a leading slash with your prefix, e.g. "/foobar".
Set to `AUTO` to make spray-servlet pick up the ServletContext::getContextPath.
root-path = AUTO

Enables/disables the addition of a `Remote-Address` header
holding the clients (remote) IP address.
remote-address-header = off

Enables/disables the returning of more detailed error messages to
the client in the error response.
Should be disabled for browser-facing APIs due to the risk of XSS attacks
and (probably) enabled for internal or non-browser APIs.
Note that spray will always produce log messages containing the full error

→˓details.
verbose-error-messages = off

The maximum size of the request entity that is still accepted by the server.
Requests with a greater entity length are rejected with an error response.
Must be greater than zero.
max-content-length = 5 m

Enables/disables the inclusion of `spray.servlet.ServletRequestInfoHeader` in
→˓the

headers of the HTTP request sent to the service actor.
servlet-request-access = off

Enables/disables the logging of warning messages in case an incoming
message (request or response) contains an HTTP header which cannot be
parsed into its high-level model class due to incompatible syntax.
Note that, independently of this settings, spray will accept messages
with such headers as long as the message as a whole would still be legal
under the HTTP specification even without this header.
If a header cannot be parsed into a high-level model instance it will be
provided as a `RawHeader`.
illegal-header-warnings = on

Sets the strictness mode for parsing request target URIs.
The following values are defined:
#
`strict`: RFC3986-compliant URIs are required,
a 400 response is triggered on violations
#
`relaxed`: all visible 7-Bit ASCII chars are allowed
#
`relaxed-with-raw-query`: like `relaxed` but additionally
the URI query is not parsed, but delivered as one raw string

1.8. spray-servlet 175

spray, Release $VERSION$

as the `key` value of a single Query structure element.
#
uri-parsing-mode = relaxed

}

Basic Architecture

The central element of spray-servlet is the Servlet30ConnectorServlet. Its job is to accept incoming HTTP
requests, suspend them (using Servlet 3.0 startAsync), create immutable spray-http HttpRequest instances for
them and dispatch these to a service actor provided by the application.

The messaging API as seen from the application is modeled as closely as possible like its counterpart, the spray-can
HTTP Server.

In the most basic case, the service actor completes a request by simply replying with an HttpResponse instance to
the request sender:

def receive = {
case HttpRequest(...) => sender ! HttpResponse(...)

}

Starting and Stopping

A spray-servlet application is started by the servlet container. The application JAR should contain a web.xml similar
to this one from the simple-spray-servlet-server example.

The web.xml registers a ServletContextListener (spray.servlet.Initializer), which initializes
the application when the servlet is started. The Initializer loads the configured boot-class and instantiates
it using the default constructor, which must be available. The boot class must implement the WebBoot trait, which is
defined like this:

/**
* Trait that must be implemented by the Boot class.

*/
trait WebBoot {

/**
* The ActorSystem the application would like to use.

*/
def system: ActorSystem

/**
* The service actor to dispatch incoming HttpRequests to.

*/
def serviceActor: ActorRef

}

A very basic boot class implementation is this one from the simple-spray-servlet-server example.

The boot class is responsible for creating the Akka ActorSystem for the application as well as the service actor.
When the application is shut down by the servlet container the Initializer shuts down the ActorSystem,
which cleanly terminates all application actors including the service actor.

176 Chapter 1. Documentation

https://github.com/spray/spray/blob/master/examples/spray-servlet/simple-spray-servlet-server/src/main/webapp/WEB-INF/web.xml
https://github.com/spray/spray/blob/master/examples/spray-servlet/simple-spray-servlet-server/src/main/scala/spray/examples/Boot.scala

spray, Release $VERSION$

Message Protocol

Just like in its counterpart, the spray-can HTTP Server, all communication between the connector servlet and the
application happens through actor messages.

Request-Response Cycle

As soon as a new request has been successfully read from the servlet API it is dispatched to the service actor created
by the boot class. The service actor processes the request according to the application logic and responds by sending
an HttpResponse instance to the sender of the request.

The ActorRef used as the sender of an HttpRequest received by the service actor is unique to the request, i.e.
each request will appear to be sent from different senders. spray-servlet uses these sender ActorRefs to coalesce
the response with the request, so you cannot sent several responses to the same sender. However, the different response
parts of a chunked response need to be sent to the same sender.

Caution: Since the ActorRef used as the sender of a request is an UnregisteredActorRef it is not reachable
remotely. This means that the service actor needs to live in the same JVM as the connector servlet.

Chunked Responses

Alternatively to a single HttpResponse instance the handler can choose to respond to the request sender with the
following sequence of individual messages:

• One ChunkedResponseStart

• Zero or more MessageChunks

• One ChunkedMessageEnd

The connector servlet writes the individual response parts into the servlet response OutputStream and flushes it.
Whether these parts are really rendered “to the wire” as chunked message parts depends on the servlet container
implementation. The Servlet API has not dedicated support for chunked responses.

Request Timeouts

If the service actor does not complete a request within the configured request-timeout period a spray.http.
Timedout message is sent to the timeout handler, which can be the service actor itself or another actor (depending on
the timeout-handler config setting). The timeout handler then has the chance to complete the request within the
time period configured as timeout-timeout. Only if the timeout handler also misses its deadline for completing
the request will the connector servlet complete the request itself with a “hard-coded” error response (which you can
change by overriding the timeoutResponse method of the Servlet30ConnectorServlet).

Send Confirmations

If required the connector servlet can reply with a “send confirmation” message to every response (part) coming in
from the application. You request a send confirmation by modifying a response part with the withAck method (see
the ACKed Sends section of the spray-can documentation for example code). Confirmation messages are especially
helpful for triggering the sending of the next response part in a response streaming scenario, since with such a design
the application will never produce more data than the servlet container can handle.

Send confirmations are always dispatched to the actor, which sent the respective response (part).

1.8. spray-servlet 177

spray, Release $VERSION$

Closed Notifications

The Servlet API completely hides the actual management of the HTTP connections from the application. Therefore the
connector servlet has no real way of finding out whether a connection was closed or not. However, if the connection
was closed unexpectedly for whatever reason a subsequent attempt to write to it usually fails with an IOException.
In order to adhere to same message protocol as the spray-can HTTP Server the connector servlet therefore dispatches
any exception, which the servlet container throws when a response (part) is written, back to the application wrapped
in an Tcp.ErrorClosed message.

In addition the connector servlet also dispatches Tcp.Closed notification messages after the final part of a response
has been successfully written to the servlet container. This allows the application to use the same execution model for
spray-servlet as it would for the spray-can HTTP Server.

HTTP Headers

The connector servlet always passes all received headers on to the application. Additionally the values of the
Content-Length and Content-Type headers are interpreted by the servlet itself. All other headers are of
no interest to it.

Also, if your HttpResponse instances include a Content-Length or Content-Type header they will be
ignored and not written through to the servlet container (as the connector servlet sets these response headers itself).

Note: The Content-Type header has special status in spray since its value is part of the HttpEntity model
class. Even though the header also remains in the headers list of the HttpRequest spray’s higher layers (like
spray-routing) only work with the Content-Type value contained in the HttpEntity.

Accessing HttpServletRequest

If your application needs access to the javax.servlet.http.HttpServletRequest, the spray.
servlet.servlet-request-access setting can be set to on. This results in the connector servlet adding
an additional request header of type spray.servlet.ServletRequestInfoHeader. This allows the ser-
vice actor (or directives) to access members of HttpServletRequest that are not in HttpRequest. This is
necessary when working with container managed security and access to the authenticated principal is required (via
getUserPrincipal) or when accessing an authenticated client SSL certificate (via getAttribute("javax.
servlet.request.X509Certificate")).

Differences to spray-can

Chunked Requests Since the Servlet API does not expose the individual request parts of chunked requests to a servlet
there is no way spray-servlet can pass them through to the application. The way chunked requests are handled
is completely up to the servlet container.

Chunked Responses spray-can renders ChunkedResponseStart, MessageChunks and
ChunkedMessageEnd messages directly to “the wire”. Since the Servlet API operates on a some-
what higher level of abstraction spray-servlet can only write these messages to the servlet container one by one,
with flush calls in between. The way the servlet container interprets these calls is up to its implementation.

Closed Messages The Servlet API completely hides the actual management of the HTTP connections from the appli-
cation. Therefore the connector servlet has no way of finding out whether a connection was closed or not. In
order to provide a similar message protocol as spray-can the connector servlet therefore simply assumes that all
connections are closed after the final part of a response has been written, no matter whether the servlet container
actually uses persistent connections or not.

178 Chapter 1. Documentation

spray, Release $VERSION$

Timeout Semantics When working with chunked responses the semantics of the request-timeout config setting
are different. In spray-can it designates the maximum time, in which a response must have been started (i.e. the
first chunk received), while in spray-servlet it defines the time, in which the response must have been completed
(i.e. the last chunk received).

HTTP Pipelining & SSL Support Whether and how HTTP pipelining and SSL/TLS encryption are supported de-
pends on the servlet container implementation.

Packaging a WAR file

If you use the xsbt-web-plugin you can very easily package your project into a WAR file with the package command
provided by the plugin.

Example

The /examples/spray-servlet/ directory of the spray repository contains a number of example projects for spray-servlet.

simple-spray-servlet-server

This example implements a very simple web-site built on top of spray-servlet. It shows off various features like
streaming and timeout handling.

Follow these steps to run it on your machine:

1. Clone the spray repository:

git clone git://github.com/spray/spray.git

2. Change into the base directory:

cd spray

3. Run SBT:

sbt "project simple-spray-servlet-server" container:start shell

4. Browse to http://127.0.0.1:8080/

5. Alternatively you can access the service with curl:

curl -v 127.0.0.1:8080/ping

6. Stop the service with:

container:stop

spray-testkit

One of sprays core design goals is good testability of the created services. Since actor-based systems can sometimes
be cumbersome to test spray fosters the separation of processing logic from actor code in most of its modules.

For services built with spray-routing spray provides a dedicated test DSL that makes actor-less testing of route logic
easy and convenient. This “route test DSL” is made available with the spray-testkit module.

1.9. spray-testkit 179

https://github.com/JamesEarlDouglas/xsbt-web-plugin
https://github.com/spray/spray/tree/release/1.2/examples/spray-servlet
http://127.0.0.1:8080/

spray, Release $VERSION$

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-testkit depends on

• spray-http (with ‘provided’ scope)

• spray-httpx (with ‘provided’ scope)

• spray-routing (with ‘provided’ scope)

• spray-util

• akka-actor 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• akka-testkit 2.2.x (with ‘provided’ scope, i.e. you need to pull it in yourself)

• scalatest (with ‘provided’ scope, for the ScalatestRouteTest)

• specs2 (with ‘provided’ scope, for the Specs2RouteTest)

Installation

The Maven Repository chapter contains all the info about how to pull spray-testkit into your classpath. However, since
you normally don’t need to have access to spray-testkit from your production code, you should limit the dependency
to the test scope:

libraryDependencies += "io.spray" % "spray-testkit" % version % "test"

Currently spray-testkit supports the two most popular scala testing frameworks, scalatest and specs2. Depending on
which one you are using you need to mix either the ScalatestRouteTest or the Specs2RouteTest trait into
your test specification.

Usage

Here is an example of what a simple test with spray-testkit might look like:

import org.specs2.mutable.Specification
import spray.testkit.Specs2RouteTest
import spray.routing.HttpService
import spray.http.StatusCodes._

class FullTestKitExampleSpec extends Specification with Specs2RouteTest with
→˓HttpService {
def actorRefFactory = system // connect the DSL to the test ActorSystem

val smallRoute =
get {

pathSingleSlash {
complete {
<html>
<body>
<h1>Say hello to <i>spray</i>!</h1>

</body>
</html>

}
} ~
path("ping") {

complete("PONG!")

180 Chapter 1. Documentation

http://scalatest.org/
http://etorreborre.github.com/specs2/
http://scalatest.org/
http://etorreborre.github.com/specs2/

spray, Release $VERSION$

}
}

"The service" should {

"return a greeting for GET requests to the root path" in {
Get() ~> smallRoute ~> check {

responseAs[String] must contain("Say hello")
}

}

"return a 'PONG!' response for GET requests to /ping" in {
Get("/ping") ~> smallRoute ~> check {

responseAs[String] === "PONG!"
}

}

"leave GET requests to other paths unhandled" in {
Get("/kermit") ~> smallRoute ~> check {

handled must beFalse
}

}

"return a MethodNotAllowed error for PUT requests to the root path" in {
Put() ~> sealRoute(smallRoute) ~> check {

status === MethodNotAllowed
responseAs[String] === "HTTP method not allowed, supported methods: GET"

}
}

}
}

The basic structure of a test built with spray-testkit is this (expression placeholder in all-caps):

REQUEST ~> ROUTE ~> check {
ASSERTIONS

}

In this template REQUEST is an expression evaluating to an HttpRequest instance. Since both RouteTest traits
extend the spray-httpx Request Building trait you have access to its mini-DSL for convenient and concise request
construction.1

ROUTE is an expression evaluating to a spray-routing Route. You can specify one inline or simply refer to the route
structure defined in your service.

The final element of the ~> chain is a check call, which takes a block of assertions as parameter. In this block you
define your requirements onto the result produced by your route after having processed the given request. Typically
you use one of the defined “inspectors” to retrieve a particular element of the routes response and express assertions
against it using the test DSL provided by your test framework. For example, with specs2, in order to verify that your
route responds to the request with a status 200 response, you’d use the status inspector and express an assertion
like this:

status mustEqual 200

The following inspectors are defined:

1 If the request URI is relative it will be made absolute using an implicitly available instance of DefaultHostInfo whose value is “http:
//example.com” by default. This mirrors the behavior of spray-can which always produces absolute URIs for incoming request based on the request
URI and the Host-header of the request. You can customize this behavior by bringing an instance of DefaultHostInfo into scope.

1.9. spray-testkit 181

http://etorreborre.github.com/specs2/
http://example.com
http://example.com

spray, Release $VERSION$

Inspector Description
body:
HttpEntity.NonEmpty

Returns the contents of the response entity. If the response entity is empty a
test failure is triggered.

charset: HttpCharset Identical to contentType.charset
chunks:
List[MessageChunk]

Returns the list of message chunks produced by the route.

closingExtension:
String

Returns chunk extensions the route produced with a
ChunkedMessageEnd response part.

contentType:
ContentType

Identical to body.contentType

definedCharset:
Option[HttpCharset]

Identical to contentType.definedCharset

entity: HttpEntity Identical to response.entity
handled: Boolean Indicates whether the route produced an HttpResponse for the request. If

the route rejected the request handled evaluates to false.
header(name: String):
Option[HttpHeader]

Returns the response header with the given name or None if no such header
can be found.

header[T <:
HttpHeader:
ClassTag]: Option[T]

Identical to response.header[T]

headers:
List[HttpHeader]

Identical to response.headers

mediaType: MediaType Identical to contentType.mediaType
rejection: Rejection The rejection produced by the route. If the route did not produce exactly one

rejection a test failure is triggered.
rejections:
List[Rejection]

The rejections produced by the route. If the route did not reject the request a
test failure is triggered.

response:
HttpResponse

The HttpResponse returned by the route. If the route did not return an
HttpResponse instance (e.g. because it rejected the request) a test failure
is triggered.

responseAs[T:
Unmarshaller:
ClassTag]: T

Unmarshals the response entity using the in-scope
FromResponseUnmarshaller for the given type. Any errors in the
process trigger a test failure.

status: StatusCode Identical to response.status
trailer:
List[HttpHeader]

Returns the list of trailer headers the route produced with a
ChunkedMessageEnd response part.

Sealing Routes

The section above describes how to test a “regular” branch of your route structure, which reacts to incoming requests
with HTTP response parts or rejections. Sometimes, however, you will want to verify that your service also translates
Rejections to HTTP responses in the way you expect.

You do this by wrapping your route with the sealRoute method defined by the HttpService trait. The
sealRoute wrapper applies the logic of the in-scope ExceptionHandler and RejectionHandler to all exceptions
and rejections coming back from the route, and translates them to the respective HttpResponse.

The on-spray-can examples defines a simple test using sealRoute like this:

"return a MethodNotAllowed error for PUT requests to the root path" in {
Put() ~> sealRoute(demoRoute) ~> check {
status === MethodNotAllowed
responseAs[String] === "HTTP method not allowed, supported methods: GET, POST"

182 Chapter 1. Documentation

spray, Release $VERSION$

}
}

Examples

A full example of how an API service definition can be structured in order to be testable with spray-testkit and without
actor involvement is shown with the on-spray-can example. This is its test definition.

Another great pool of examples are the tests for all the predefined directives in spray-routing. They can be found here.

spray-util

The spray-util module contains a number of smaller helper classes that are used by all other spray modules, except
spray-http, which is kept intentionally free of other spray dependencies.

Dependencies

Apart from the Scala library (see Current Versions chapter) spray-util only depends on akka-actor (with ‘provided’
scope, i.e. you need to pull it in yourself).

Installation

The Maven Repository chapter contains all the info about how to pull spray-util into your classpath.

Afterwards just import spray.util._ to bring all relevant identifiers into scope.

Configuration

Just like Akka spray-util relies on the typesafe config library for configuration. As such its JAR contains a
reference.conf file holding the default values of all configuration settings. In your application you typically
provide an application.conf, in which you override Akka and/or spray settings according to your needs.

Note: Since spray uses the same configuration technique as Akka you might want to check out the Akka Documen-
tation on Configuration.

This is the reference.conf of the spray-util module:

####################################
spray-util Reference Config File
####################################

This is the reference config file that contains all the default settings.
Make your edits/overrides in your application.conf.

spray {

Always contains the deployed version of spray.
Referenced, for example, from the `spray.can.server.server-header` setting.

1.10. spray-util 183

https://github.com/spray/spray/blob/master/examples/spray-routing/on-spray-can/src/test/scala/spray/examples/DemoServiceSpec.scala
https://github.com/spray/spray/tree/release/1.2/spray-routing-tests/src/test/scala/spray/routing
https://github.com/typesafehub/config
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html
http://doc.akka.io/docs/akka/2.0.4/general/configuration.html

spray, Release $VERSION$

version = "<VERSION>"
}

Pimps

spray-util provides a number of convenient “extensions” to standard Scala and Akka classes.

The currently available pimps can be found here. Their hooks are placed in the spray.util package object, you
bring them in scope with the following import:

import spray.util._

Side Note

Even though now officially somewhat frowned upon due to its arguably limited PC-ness we still like the term “pimps”
for these, since it honors the origins of the technique (the “pimp-my-library” pattern, as it was originally coined by
Martin Odersky in a short article in late 2006) and provides a very succinct and, in the scala community, well-known
label for it.

LoggingContext

The LoggingContext is a simple akka.event.LoggingAdapter that can always be implicitly cre-
ated. It is mainly used by spray-routing directives, which require a logging facility for an implicitly available
ActorRefFactory (i.e. ActorSystem or ActorContext).

184 Chapter 1. Documentation

https://github.com/spray/spray/tree/release/1.2/spray-util/src/main/scala/spray/util/pimps
https://github.com/spray/spray/blob/release/1.2/spray-util/src/main/scala/spray/util/package.scala
http://www.artima.com/weblogs/viewpost.jsp?thread=179766

CHAPTER 2

Project Info

Current Versions

stub

Maven Repository

stub

185

	Documentation
	spray-caching
	spray-can
	spray-client
	spray-http
	spray-httpx
	spray-io
	spray-routing
	spray-servlet
	spray-testkit
	spray-util

	Project Info
	Current Versions
	Maven Repository

